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CHAPTER I: INTRODUCTION 

General Introduction 

Fluorescence is the phenomenon in which absorption of light of a given wavelength 

by a fluorophore is followed by the emission of light at longer wavelengths. There are three 

major advantages of fluorescence detection over other light-based investigation methods: 

high sensitivity (detection limit is as low as I0~15 mol-L'1). high speed, and safety (samples 

are not affected or destroyed in the process, and no hazardous byproducts are generated). 

Fluorescence spectroscopy techniques have been developed during the past forty years, and 

the applications of these techniques have had a remarkable growth in the biological sciences 

in the past 20 years. Steady-state fluorescence spectroscopy and time-resolved fluorescence 

spectroscopy are two important research tools in biochemical and biophysical studies. 

Currently, the fluorescence techniques are also applied in areas such as environmental 

monitoring, clinical chemistry, DNA sequencing, genetic analysis, cell identification and etc. 

Steady-state fluorescence spectroscopy and time-resolved fluorescence spectroscopy 

are the two major techniques used in my dissertation work. It is important to discuss briefly 

the basic principles of fluorescence spectroscopy [1.2]. This discussion will be followed by a 

brief introduction of the major problems treated in this dissertation. 

Fluorescence Spectroscopy 

What happens after a photon excites a molecule originally in the ground state is 

usually illustrated by a Jablonski diagram (Figure 1.1). Molecules in excited vibrational 

states rapidly dissipate their excess vibrational energy and relax to the ground vibrational 

level in a given excited state. Internal conversion (typically a horizontal transition, i.e. 
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Figure 1.1 Jablonski diagram gives a picture of what would possible happen in a molecule 
after one photon absorbed. So is singlet ground state. Si and S, are two possible singlet 
excited states, and T, is triplet excited state. The subieveIs in each of the electronic states are 
vibrational states. The number of vibrational levels in different electronic states may vary. 
The rate of non-radiative transition (k^) is the sum of vibrational relaxation (kvr), internal 
conversion (kjc), external conversion (kec), and intersystem crossing (kuc). kp and k? is the 
rate of fluorescence and rate of phosphorescence, respectively. 

Si->S:). external conversion {i.e. energy transfer or collisions between the excited 

fluorophore and the solvent or other solute molecules), and intersystem crossing (Si—> T,) 

are three types of nonradiative transitions. Fluorescence is a radiative transition between 

electronic states of the same multiplicity. Because internal conversion to Si and vibrational 

relaxation are more rapid processes than fluorescence, fluorescence usually occurs from the 

ground vibrational state of Si to various vibrational levels in So. 

Quantum Yield 

The fluorescence quantum yield or fluorescence quantum efficiency is the ratio of the 

number of photons emitted to the number absorbed. It can be expressed by the equation: 
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Where kp is the rate constant for fluorescence and knr is the sum of the rate constants for 

nonradiative processes, knr = ker+ ku + klM. where ker, ktc and klsc are the rate constants for 

external conversion (ec), internal conversion (ic) and intersystem crossing (isc), respectively. 

The easiest way to estimate quantum yield of a fluorophore is by comparison with standards 

of known quantum yield. 

Where is the quantum yield of the standard, A is the absorbance at the excitation 

corrected emission spectrum. Usually, sample and standard are excited at the same 

wavelength so that it is not necessary to correct for the different excitation intensities for 

different wavelengths. Some of the most common used standards are listed in Table 1.1. 

Fluorescence Lifetime 

Besides quantum yield, fluorescence lifetime is another important characteristics of 

fluorophores. The fluorescence lifetime is the average time that a fluorophore spends in the 

excited state before emitting a photon of light and returning to the ground state. Most 

fluorescent materials (biological & chemical) have lifetimes in the range of picosecond ( 10"12 

sec) to microsecond (10'6sec). The lifetime of fluorophore is related to the rate constants with 

the following equation: 

( 1-2 ) 

wavelength, n is the refractive index of the solvent and J Fdv is the integral of the 

T F  —  ( k p  +  k n r )  ( 1-3) 



www.manaraa.com

4 

Table 1.1 Quantum Yield Standards 

Compound Solvent *F Reference 

Tryptophan Water 0.13 [31 

Hypericin DMSO 0.32 [41 

Rhodamine 6G Ethanol 0.94 [5] 

Rhodamine 101 Ethanol 1.0 [6] 

9,10-DPAa Cyclohexane 0.95 [7] 

a 9, IO-DPA is 9.10-Diphenylanchracene 

If there is no any nonradiative process, the lifetime is called intrinsic or natural lifetime (r„) 

and is given by: 

Tn = 1/kF ( 1-4 ) 

Combine equations 1-1, 1-3 and 1-4, a relationship between quantum yield and lifetime is 

given by: 

Of = 1 f I Tn ( 1-5 ) 

There are several direct or indirect methods to measure the fluorescence lifetime. 

Time-correlated single photon counting (TCSPC) is one of the popular methods used in time-

domain lifetime measurement. The principle and instrumentation of TCSPC will be discussed 

in detail in Chapter II. 

Fluorescence Quenching 

Fluorescence intensity will be reduced by a wide variety of mechanisms. The 

processes that quench the fluorescence intensity include collision, energy transfer, charge 
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transfer, the emission being reabsorbed by the fluorophores in the solution and etc. The 

Stern-Volmer equation ( 1-6 ) is a well-known equation used to model the collisional 

quenching. 

'— = 1  + KSY[Q] = I  + kqr q[Q] (1-6) 

Where x and T0 is the lifetime in the presence and absence of quencher, respectively, Ksv is 

the Stern-Volmer quenching constant, kq is the biomolecular quenching constant, and [Q] is 

the quencher concentration. The Stern-Volmer equation is widely used to determine the 

accessibility of fluorophore (usually is tryptophan) in proteins in water. For example, if a 

tryptophan residue is buried inside the protein, an aqueous soluble quencher would not 

quench the intensity of fluorescence if it does not easily penetrate the protein: on the other 

hand, quenching occurs if the tryptophan residue is on the surface of the protein. Acrvlamide 

and iodide are the two quencher commonly used because they do not denature the protein. 

Fluorescence Resonance Energy Transfer (FRET) 

Several nonradiative processes occur after a fluorophore absorbs a photon (Figure 

1.1), fluorescence resonance energy transfer is one of the important processes. Energy 

transfer can occur when a donor's emission spectrum overlaps with an acceptor's absorption 

spectrum. This is not the result of emission from the donor being absorbed by the acceptor. 

There is no photon involved in FRET. The reason that FRET has become a valuable tool for 

studying biomoleculars is that the efficiency of energy transfer has a strong inverse 

dependence on the distance between the donor and acceptor [1], Thus, the appearance of 

FRET is a highly specific indicator of the proximity of the two molecules. This led to the 

idea of using FRET efficiency as a "spectroscopic ruler" to measure molecular distances [8]. 
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The concept of FRET was first introduced by Fors ter in 1948 [9], The rate of energy transfer 

is given by Fôrster equation: 

Where Td is the lifetime of the donor in the absence of acceptor, Ro is the Fôrster distance, 

and r is the distance between donor and acceptor. From the equation, one can easily conclude 

that when the donor-acceptor distance is equal to the Fôrster distance, the rate of energy 

transfer is equal to the radiative decay rate of donor in the absence of acceptor. The Fôrster 

distance (Ro) can be estimated from the donor's emission spectrum, acceptor's absorption 

spectrum and the quantum yield of donor [ 10]: 

K ~ is the dipole-dipole orientation factor and it is usually assumed to be 2/3, n is the 

refractive index of the solvent, <t>o is the fluorescence quantum yield of the donor, Fd( D ) is 

the corrected emission spectrum of donor with its area normalized to unity in a wavenumber 

unit, £A (D) is the acceptor molar extinction coefficient at wavenumber V . The unit of 

Fôrster distance obtained from equation (1-8) is Â. The Fôrster distance is typically in the 

range of 20 - 60 Â. 

Fluorescence Anisotropy 

When polarized light is used to excite fluorophores in an isotropic solution, only 

those whose electric dipoles are aligned parallel to the plane of polarization of the incident 

k T  =  — Â 6  ( 1-7) 

R0 = 9.78x 103[k 2n~4<I>DJ]1/6 ( 1-8 ) 

( 1-9) 
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beam absorb the light. Before the absorption of light, the fluorophores are oriented randomly 

in the solution, the selective absorption results in a partially oriented population of 

fluorophores and in partially polarized fluorescence emission. The dipole orientation of the 

emission is parallel to the transition moment of each molecule. If the molecules are unable to 

rotate during the lifetime of the excited state, then the plane of polarization of the 

fluorescence will be parallel to that of the exciting light. However, if the fluorophores are 

able to rotate within this time period, then the degree of polarization will diminished with 

time. The emission is depolarized by a number of phenomena. Rotational diffusion is one 

major cause. Anisotropy measurement provides information on the size and shape of proteins 

or the rigidity of various molecular environments. Fluorescence anisotropy measurement will 

be discussed in Chapter II. 

Hypericin and Hypocrellin 

Hypericin (4,5,7,4',5',7'-hexahydroxy 2,2'dimethyl-meso naphthodianthrone) is a 

naturally occurring polycyclic aromatic dianthraquinone (Figure 1.2). It can be extracted 

from plants of the Hypericum perforatum, commonly known as St. John's wort. 

The healing properties of St. John's Wort have long been known. Throughout the 

ancient world the Greeks used it as a skin balm and it figured prominently in prechristian 

celtic rituals, both for magical purposes and as a calming agent. Now in the twenty first 

century St. John's Wort is still exerting its medicinal qualities as a natural herbal remedy for 

depression. In the late 1980s, Meruelo et al. reported that hypericin and pseudohypericin 

inactivated or blocked the reproduction of certain retroviruses in mice [11]. This led to 

speculation that those compounds might have the similar effect to human retroviruses, like 

HIV (human immunodeficiency virus) that causes acquired immunodeficiency syndrome 
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Figure 1.2 Structure of (a) hypericin, (b) hypocrellin A, and (c) hypocrellin B. 
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(AIDS). Recent research results showed that hypericin could destroy the equine infectious 

anemia virus (EIAV) and the related human immunodeficiency virus [12-16]. Besides the 

clinical and pre-clinical studies toward hypericin, the relevant chemical, physical and 

biological characterizations were carried out by several researchers [17-20]. Several studies 

showed that the presence of light is important for the antiviral and antitumor activities of 

hypericin [21-23], However, the molecular basis of this mechanism is still not well 

understood. Several mechanisms have been suggested including light-induced acidification 

[24], singlet oxygen [25], free radical and superoxide [26], and excited-state H-atom transfer 

[27]. 

Hypocrellin, a naturally occurring polycyclic qui none found in a kind of mold 

(Hypocrella banibusae) common in China, is another exciting potential photodynamic 

therapy (PDT) agent. Hypocrellin includes hypocrellin A and hypocrellin B (Figure 1.2). 

Like hypericin, hypocrellin also displays significant light-induced antiviral activity against 

enveloped lentiviruses such as HTV [28, 29]. 

The structural similarities of hypericin and hypocrellin have been the basis for 

performing comparative studies on them. Notably, they acidify the surrounding media in the 

presence of light [24,30]. Unlike hypericin, which maintains measurable virucidal activity at 

low oxygen level, hypocrellin absolutely require oxygen for its antiviral activity [22]. The 

study of the primary photophysics of hypericin and hypocrellin show that they both display 

excited-state intramolecular H-atom transfer. The time constant in hypericin is -lOps [31], 

does not depend on viscosity, and depends only very weakly on solvent [32]. The transfer 

rate in hypocrellin has a strong dependence on the solvent viscosity and the time constant 

ranges from I Ops to 250ps in the solvent studied [33]. A - I Ops component is also detected 
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hypericin 

"normal" 
hypericin-like 

/ 
"tautomer" 

hypocrellin-like 

hypocrellin 

proton stretch coordinate 

Figure 1.3 Unified picture depicting the ground- and excited-state potential energy surfaces 
for hypericin-like and hypocrellin-like molecules as a function of the proton stretch 
coordinate. The right-hand side of the ground-state potential energy surface indicates that the 
hypericin double tautomer is not populated in the ground state, whereas the hypocrellin A 
double tautomer is populated. On the excited-state surface, the zero-point vibrational levels 
for an OH—O or an OD—O system are depicted. The height of the zero-point level with 
respect to the barrier in the proton stretch coordinate determines whether an isotope effect 
will be observed. The third potential potential well, the middle of the figure represents either 
another possible tautomeric form or some other intermediate between, for example, the 
normal and the double tautomer species of hypericin. The arrows in the diagram are meant to 
remind the reader of the time constants for the H-atom transfer processes in hypericin and 
hypocrellin. One should not identify the proton coordinate for the reaction coordinate in this 
system [34]. 
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Figure 1.4 Generalized potential energy surface rationalizing the 10ps H-atom transfer in 
hypericin (and hypocrellin A, in which case N and T are interchanged). The absence of an 
isotope effect for this component indicates that the zero point vibrational level lies above the 
barrier in the proton coordinate and that the reaction coordinate for the H-atom transfer 
cannot be identified with the proton coordinate. Trapping the system in the tautomer well is 
effected by a low amplitude conformational change in the "skeleton" coordinate. This 
diagram attempts to provide a plausible explanation of how a rise in "blue" emission can 
occur by making the energy difference between the ground and excited state double tautomer 
larger in the skeleton coordinate than in the proton coordinate [33]. 



www.manaraa.com

12 

for hypocrellin in viscous solvents such as octanol and ethylene glycol [35]. The H-atom 

transfer is not concerted in hypericin [36]. 

During the past several years, the Petrich group has undertaken the task of unravelling 

the excited-state primary photophysical processes of hypericin and hypocrellin, and of 

making an effort to produce a unified picture of the hypericin and hypocrellin photophysics 

(Figure 1.3 and Figure 1.4). This hypothesis is based on the observation that under certain 

conditions a -lOps component is resolved in hypocrellin photophysics which is comparable 

to that observed in hypericin. 

Antiviral Activity of Hypericin and Hypocrellin 

Hypericin and hypocrellin are two kinds of natural occurring photosensitizers. The 

mechanism by which hypericin (or hypocrellin) inactivate HIV infectivity is not clear. 

Generally it is believed that photosensitization processes involve molecules having a high 

triplet yield. Both hypericin and hypocrellin have a large triplet yield, 0.70 for hypericin in 

ethanol [4] and 0.83 for hypocrellin A in benzene [37], respectively. Two general 

photoreactions involving the triplet state of a photosensitizer are recognized toward the 

phototheraputic mechanism of hypericin and hypocrellin [38], i.e. type I and type II, which 

are illustrated in Figure 1.5. In type H process, the interaction of the triplet state of 

photosensitizer with the ground triplet state of molecular oxygen leads to a production of 

singlet oxygen, which is a highly reactive species. In type I, the triplet state of photosensitizer 

reacts with substrate by H-atom transfer or electron transfer to form radical species, i.e. 

superoxide anion. 

In addition to those two types of well-known mechanisms, researchers in Iowa State 

University have proposed an alternative origin of the photoinduced virucidal activity of 



www.manaraa.com

13 

Sens 

hv 

Type I 
Sens 

Type II 

Substrate 
or solvent » 

Radicals ^ JSens '02  

Oz 

f 
Oxygenated 
products 

f 
Reactions 

t . 
Reactions 

Figure 1.5 Type I and Type II photosensitization processes. 

hypericin [24, 39]. Both hypericin and hypocrellin were observed a pH decrease in cells after 

the illumination. This pH drop effect is due to the excited state H-atom transfer from the 

photosensitizer to its environment. It is argued that the virucidal activity of hypericin (or 

hypocrellin) is related to its ability to acidify its environment [19, 40]. 

The comparative studies of nine perylenequinones, including hypericin and 

hypocrellin, conducted by Diwu and co-workers [41] reveal that the quantum yield of singlet 

oxygen formation is not sufficient to explain the reported antiviral activities of these 

molecules. Some studies suggest that hypericin does not require oxygen for its antiviral 

activity [19, 24,42]. All those results support the idea that there are pathways parallel to 

those involving molecular oxygen for light-induced antiviral activity in hypericin, thus, light 

induced pH drop could be taken into account as one of the possible reasons. Also, the type I 
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and type II photoprocesses might be affected by the pH drop in a way to generate reactive 

species that can exist under acidic environment [30]. 

Photodynamic Therapy (PDT) and Molecular Flashlight 

Photodynamic therapy (PDT) is a promising treatment for some types of cancer and 

other nonmalignant conditions. It is based on the discovery that certain drugs known as 

photosensitizing agents can kill one-celled organisms by exposure of the tissue to visible 

nonthermal light (400-700nm). In PDT, first a drug called a photosensitizer is administered 

to the patient, usually by injection. The photosensitizer alone is harmless and has no effect on 

either healthy or abnormal tissue. However, when light (often from a laser) is directed onto 

tissue containing the drug, the drug becomes activated and the tissue is rapidly destroyed, but 

only precisely where the light has been directed. Thus, by careful application of the light 

beam, the technique can be targeted selectively to the abnormal tissue [43]. 

Most photosensitive molecules have a heterocyclic ring structure similar to that of 

chlorophyll or hemoglobin. Light energy is captured in the form of photons and the energy is 

transferred to other molecules resulting in the liberation of short-lived energetic species that 

interact with biological systems and produce tissue damage [44]. An ideal photosensitizer 

must be biologically stable, photochemically efficient, selectively retained in the target 

tissue relative to surrounding normal tissue and should have minimal toxicity other than to 

the treated area. Hematoporphyrin and its derivatives are the most commonly used 

photosensitizer [45-48J, but they have significant side effects. Thus many other sensitizers 

have been synthesized and studied, namely, phthalocyanines [49], mesotetra(hydroxyphenyl) 

porphyrins [50], 5-aminolevulinic acid [51], texaphyrins [52], benzoporphyrin derivative 

monoacid ring A [53] and etc. 
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(c) 

Figure 1.6 Structure of (a) luciferin, (b) pseudo hypericin, and (c) hypericin-luciferin 
tethered molecule. 
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An advantage of PDT is that it causes minimal damage to healthy tissue. However, 

the traditional method of exciting the photosensitizers is to illuminate the target area by 

introducing fiber optics [54, 55] or to depend on external light sources to penetrate the tissue 

efficiently enough to excite the chromophore [55-57], The first of these methods is invasive 

and only effective for localized tumors. The latter depends critically on the absorption 

spectrum of the photosensitizer and the spectrum intensity, and penetration efficiency of the 

external light source. 

Scientists at Iowa State University have proposed an alternative method called the 

"molecular flashlight". The photosensitizer, hypericin, is excited by inducing a chemilu-

minescent reaction in the patient [42, 58]. They have demonstrated that the chemilumi-

nescence produced by the reaction of luciferin and the enzyme luciferase is sufficient to 

induce the antiviral activity of hypericin in vitro [58]. Recently they synthesized a molecule 

containing hypericin and luciferin moieties joined by a tether (Figure 1.6), and studied some 

of its biological and photophysical properties. The results of this study showed that the 

antiviral activity of the tethered molecule is equivalent to that of pseudohypericin (Figure 

1.6), which is the base molecule for the synthesis of the tethered species. 

Enzymatic Role of the Loop (52-72) in Porcine Fructose-l,6-bisphosphatase 

Fructose 1,6-bisphosphatase (FBPase) is a primary control point in gluconeogenesis 

(synthesis of carbohydrate from noncarbohydrate material) and is important in the regulation 

of blood glucose. FBPase catalyzes the hydrolysis of fructose-1,6-bisphosphatate to fructose 

6-phosphate and inorganic phosphate. FBPase is a homotetramer, each unit contains 335 

residues [59] and the molecular weight of each unit is 37,000. The enzyme requires divalent 

cations (Mg2+, Mn2+, or Zn2+), and the rates of reaction vary sigmoidally with metal ion 
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concentration (Hill coefficient of 2) [60-62]. The enzyme has two allosteric sites, an activator 

site for monovalent cations and an inhibitor site for AMP. The active site of the enzyme 

accommodates the substrate fructose-1,6-bisphosphatate and two divalent metal ion subsites. 

Binding of AMP and one of the divalent metal ions is mutually exclusive and this is the basis 

of enzyme regulation. In addition, fructose-2,6-bisphosphatate binds in the substrate site and 

inhibits the enzyme synergistically with AMP. FBPase exists in at least two conformational 

states called R and T [63, 64]. Binding of AMP at allosteric site located 28 Â from the 

nearest active site stabilizes the inactive T-state. 

FBPase consists an important loop (residues 52-72) that is involved in the catalytic 

function. A proposed model for allosteric regulation involving loop 52-72 was graphically 

demonstrated in Figure 1.7 [65]. The loop is engaged in active R-state, while disengaged in 

the inactive T-state. After coordination of divalent cation (i.e. Mg2>) and binding of fructose-

1,6-bisphosphatae substrate, the loop 52-72 closes onto the active site. This loop closure 

brings together the amino acids that are critical for catalysis and determine the fate of the 

substrate. The engaged loop 52-72 allows Asn64 to hydrogen bond with the side chain of 

Glu98, which putatively works in concert with Asp74 as a catalytic base. The engaged loop 

52-72 also stabilizes the hydrogen bond of Asp68 with Arg276 [65]. When AMP binds to loop 

22-27, which connects helix HI and H2, interactions between subunits CI and c4 could 

displace helix H2. The small displacement of helix H2 putatively disengages loop 52-72 from 

the rest of the tetramer, which in turn perturbs Asp74 and Glu98 (catalytic base tandem) [65]. 

Dissertation Organization 

Chapter II in this dissertation introduces two major experiment systems utilized for 

this work and will be described in detail: time-correlated single photon counting and 30-Hz 
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antagonistic. Dashed lines represent poorly ordered structure. 
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pump-probe transient absorption spectrometer. Chapter [II to VII contain individually 

published papers or papers submitted for publication. Chapter IV (Environment of 

Tryptophan 57 in Studied by Time-resolved Fluorescence and Site-directed Mutagenesis) 

presents the work on structural studies of porcine fructose-1,6-bisphosphatase by using state-

of-the-art fluorescence techniques. Chapter III (Photophysics of Hypericin and Hypocrellin A 

in Complex with Subcellular Components: Interactions with Human Serum Albumin). 

Fluorescence lifetime and anisotropy measurement, fluorescence quantum yield and energy 

transfer measurement were performed by Jin Wen. Chapter V (Multidimensional Reaction 

Coordinate for the Excited-state H-atom Transfer in Perylene Quinones: Importance of the 7-

Membered Ring in Hypocrellin A and B) and Chapter VI (Coupling of Large-Amplitude 

Side Chain Motions to the Excited-state H-Atom Transfer of Perylene Quinones: Application 

of Theory and Experiment to Calphostin C) discuss the photophysics of hypericin and 

hypocrellins, and give a simple model to describe their photoprocesses occurring in 

hypocrellins. In chapter V, steady-state measurement, transient absorption measurement were 

performed by Jin Wen. In chapter VI, Jin Wen performed the steady-state measurements and 

the transient absorption measurements. Chapter VII (Towards the Molecular Flashlight: 

Preparation, properties, and Photophysics of a Hypericin-luciferin Tethered Molecule) is a 

research note that has been accepted by Photochemistry and Photobiology. It discusses the 

synthesis method of a hypericn-luciferin tethered molecule and compares its photophysical 

and photobiological characterizations in both organic solvent and micelles that mimic the 

environment in living cells. Chapter VIII gives general conclusions for the whole 

dissertation. 
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CHAPTER II: EXPERIMENTAL APPARATUS 

Time-Correlated Single Photon Counting (TCSPC) 

I) Apparatus 

Time-correlated single photon counting is a widely-used technique by photochemist 

and photobiologist to measure fluorescence lifetimes on the picosecond to nanosecond 

timescales. The principle of TCSPC and the descriptions of various experimental setups have 

been discussed in detail by several researchers [1,2]. In this chapter, I will discuss the 

TCSPC setup in our laboratory and several of its applications. 

A schematic of the apparatus is shown in Figure 2.1 [3], A Coherent 701 rhodamine 

6G dye laser is pumped with about 1W of 532nm radiation from a Coherent Antares 76-s 

CW mode-locked Nd. YAG laser. The dye laser is cavity-dumped at 3.8MHz. The output 

wavelength of the dye laser is adjustable in the range between 560nm and 620nm. The full 

width at half maximum (FWHM) of the pulses is about I Ops. Ultraviolet (UV) excitation 

wavelengths (between 280nm and 310nm) are achieved by focusing the dye laser pulses with 

a lens onto a potassium dihydrogen phosphate crystal (KDP). Fluorescence is collected at 

right angles through a polarizer mounted at 54.7° relative to the excitation polarization, then 

passed through cutoff filters or a monochromator and detected with a Hamamatsu R3890u-50 

microchannel plate photomultiplier tube (MCP-PMT). Data are stored in a Norland 5500 

multichannel analyzer (MCA), then transferred and analyzed with a personal computer. 

The time-scale of the experiment is set with an Ortec 457 time-to-amplitude converter 

(TAC). The trigger, usually the output from the microchannel plate amplified by a pre­

amplifier, is routed through a discriminator to serve as a "start" signal to initiate charging of 



www.manaraa.com

28 

An tares 76-s CW mode-locked 

Nd:YAG laser 

532 nm Coherent 701 Rhodamine 

6G dye laser 
A 

Start Puke 

Sample 

Polarizer 

(excitation fibers 

Polarizer 

{emission) 

Frequency 

doubling 

crystal 

-560nm - 600nm 

"7 

Half-wave 

plate 

ISA H-10 

Monochromator or 

Cut-off Filters 

Hamamatsu R3890u-50 

microchannel plate 

Û PreAmplifier 

Stop Pulse Counter 

Ortec 457 Time- Tennelec TC 455 

to-Amplitude Discriminator 

Converter 

Norland 5500 

Multichannel 

Analyzer 

Figure 2.1 Time-correlated single photon counting apparatus 
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a capacitor within the TAC. The output from the cavity dumper driver provides a "stop" 

signal to stop the charging ramp in the TAC. A pulse is then output from the TAC, the 

amplitude of which is proportional to the charge on the ramp and hence the time between 

"start" and "stop". The time difference between two separate pulses from the cavity dumper 

is fixed and so a "decay time" is represented by the pulse amplitude from the TAC. The TAC 

is run in this "inverted mode" so that each detected photon is counted. It takes a finite time to 

reset the voltage ramp, and if the TAC was started by each laser trigger many counts would 

be lost while the TAC was reset. A count is stored in the MCA in an address corresponding 

to the pulse amplitude output from the TAC. 

The time resolution of TCSPC depends on the jitter of detection electronics. Although 

the width of the laser pulse is about 7ps. the FWHM of the instrument function is about 

150ps. Therefore, TCSPC is not possible to detect the ultrafast photophysical events. 

2) Nonlinear Least-Squares Fitting 

An important aspect of the TCSPC experiment is the analysis of the decays. The 

measured decay l(t) is the convolution of the instrument response function L(t') and the 5-

pulse response function G(t-t')[2], 

I(t) = L(t')®G(t-0 (2-1) 

t 
= J L(t)G(t — t' )dt' 

0 

The fitting process is as follows: 1) Determine a mathematical model. The S-pulse response 

function G(t-t') is normally represented with a single or multi exponentials. We always start 

with the simplest model, a single exponential. If this does not give a good fit, we will try 
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double or triple exponentials. 2) Estimate the initial values. Most tilting programs require a 

guess value tor each parameter in the expression. The program runs iterative ly until some set 

of criteria or tolerance is reached. "The goal of data analysis is to obtain the parameter values 

which provide the best match between the measured decay I(t) and the calculated decay L(t) 

using the assumed parameter values." [4] 

The most common algorithm used in TCSPC data analysis is Nonlinear Least-

Squares Analysis, which is a mathematical procedure for finding a best fitting curve to a 

given set of points by minimizing the sum of the squares of deviations of the data points from 

the fitted curve. A parameter called chi-squared, is calculated for each iteration: 

-r = Z -ytU'it-'cCi)!2 = Z <2-2> 
z=n, G'i ;=n, •' 

<jj is the error for data point. In TCSPC, the error is the square root of the number photon 

counts. Hence, a? =I(t,). ni and n2 are the first and last channels of region chosen for analysis. 

In an ideal fit, the fitted curve passes through each data point, and the %" is zero. For a real 

situation, some data points are fit well, having a small (less than 1) ratio of deviation to error, 

and other data points are fit poorly, having a large (greater than I) ratio of deviation to error. 

Statistically, a good fit will contain both. Therefore, on average we expect the value of each 

term in the sum equals 1 and the %2 equals the number of data points. It is not convenient to 

interpret in this function because it depends on the number of data points. Thus, a reduced 

%- is more commonly used. The expression of reduced %' is as follows: 

/fi= ^ . (2-3) 
n2 — nj +1 — p 
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where ni and m are as defined above, and p is the number of variable parameters in the 

fitting function. The value of is expected to be unity if there is no systematic error. 

The steps to judge the goodness of a fit are: I) visual comparison of the measured 

data and calculated data, which should be good matched. 2) visual examination of calculated 

residuals which should be randomly distributed around zero. 3) should be close to 1. 

Values of less than 1.2 generally indicate an acceptable fit. 

3) Time-Resolved Anisotropy Analysis 

The TCSPC can also be used to measure the time-resolved anisotropy. In time-

resolved anisotropy measurement, the apparatus setup is almost the same as we described in 

Figure 2.1 except for a few of differences: 1 ) The analyzer polarizer is controlled by a motor 

to rotate between 0 degree and 90 degree in a given interval (e.g. every 2 minutes). 2) Two 

decays are recorded on the MCA, one corresponding to the decay of molecules whose 

electric dipoles are parallel to the polarization of incident beam (recorded when the polarizer 

is at 0 degree), the other corresponding to the decay of molecules whose electric dipoles are 

perpendicular to the polarization of excitation beam (recorded when the polarizer is at 90 

degree). 

Rotational diffusion of fluorophores is a major cause of fluorescence depolarization. 

The Perrin equation [2] gives the relationship between anisotropy r, initial anisotropy ro, 

fluorescence lifetime decay time Tf and rotational relaxation time Tr: 

J.=_L[1+2LFJ (2-4) 
r r0 rr 

where anisotropy r can be calculated by the following equation: 
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r= 1,1 ~11 (2-5) 
III + 2Ij_ 

Here In and L are the fluorescence intensity components parallel and perpendicular to the 

plane of polarization of incident beam. 

The rotational relaxation time tr can be recovered from time-resolved anisotropy 

measurement. In time-resolved anisotropy measurement, the time dependent decays of the 

parallel (II) and perpendicular (_L) components are given by: 

,„==-" F ll + :roe-"r,, 

I_i_ =e-t/T F (l-r0e_t/T r ) 

So the time dependent anisotropy. r(t) is given by: 

r(t) = [I„(t) - L(t)| / [I,, + 2Ix(t) j (2-7) 

= r„=-"*. 

r(t) depends only on the rotational relaxation time tr, while the total fluorescence intensity 

depends only on fluorescence decay time Tf ( F(t) = 3 e-t/T F ), so that Tf and tr can be 

separated and recovered respectively. 

Anisotropy decays can be used to estimate the mobility of a fluorophore. An 

interesting application is a fluorophore attached onto a bulky molecule like protein. Here the 

diffusion of fluorophore is modeled to be restricted to a cone of half angle (0c). The cone 

angle is related to the order parameter by: 

——- = S2 = [—(cos9 c )( 1+ COS0 c )]2 (2-8) 
r0 2 
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where ro is the initial anisotropy when time is 0 and r_ is the limiting anisotropy. When the 

cone angle is 90 degree, S: is zero, which indicates a freely rotating fluorophore. and S2 with 

a value of 1 indicates a totally restricted motion of fluorophore. which indicates that the 

fluorophore is rotated with protein. If the anisotropy decay is fit to a double exponentials. r(t) 

= ri(0)exp(-t/Tri) + r2(0)exp(-t/"Cr2), then ro = r,(0) + r:(0). and r„ is the fit of the slow time 

component of anisotropy decay. 

30 Hz Pump-Probe Transient Absorption Spectrometer 

1) Apparatus 

Unlike TCSPC. the time resolution of this system is determined by the laser pulse 

width. This system is fast enough to monitor any photophysical events happened in 

picosecond timescale, for example excited state H-atom transfer. The details of the 

spectrometer will be discussed as well as the pump-probe experiment itself. Figure 2.2 [5] 

describes the basic set up of the experiment. 

A Coherent Model 76-s Antares laser is used as the "mother" laser to pump all the 

other lasers. The second harmonic output of the Antares, with a power of-1.5 W at 532nm, 

is used to pump a Coherent model 702-1 dye laser, while a portion of fundamental (1064nm) 

of Antares is seeded into a continuum model RGA60 30Hz regenerative amplifier (regen), 

which amplifies a lOOps 200nJ pulse to approximately 200mJ at 1064nm. The output of 

regenerative amplifier is produced via second harmonic generation in a KDP crystal at 

532nm with a power of ~40mJ / pulse. The repetition rate of the output is 30Hz. The dye 

laser, which is pumped by the Antares, is used in conjunction with a saturable absorber to 

produce InJ lps pulses at 76MHz. The lasing medium is Rhodamine 6G in ethylene glycol 
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and the saturable absorber is DODC1 in ethylene glycol. Shortening of I0()ps pulses to ~7ps 

in the dye laser is due to the increasing gain on the rising edge of the dye pulse, followed by 

rapid depletion of the gain at the peak of the dye pulse[ 1], The saturable absorber inside the 

dye laser cavity will further shorten the pulse width to - Ips with absorbing the leading edge 

of the pulse. At this point, the pulses from the dye laser are sufficiently short, but their low 

power excludes the performance of nonlinear optical effects, such as white light continuum 

generation. A dye amplifier followed the dye laser is used to produce high-energy pulses. 

The dye amplifier contains three dye cells full of Kiton Red. The amplification is obtained 

when the pulse from regenerative amplifier and the pulse from the dye laser enter the dye cell 

at the same time and they overlap spatially. The gain is on the order of 1()6 and the energy of 

each pulse is ~2mJ. 

The amplified pulses are split into two parts. One part travels through a translation 

stage that is controlled by a computer through an IEEE interface. This part is known as 

"pump". The other part is focused into a cuvette of water to produce the white light 

continuum. This part is known as "probe". Because the probe is white light, it allows the 

probing range across the whole spectrum from blue to red. The probe is split into two spots 

both hitting the sample cell, entering the monochromator slit and detected by two PMTs 

respectively. The pump is directed to reach the sample cell at the same spot as one of the 

probe spot at 45° relative to the probe and finally is blocked to avoid it reaching the detector. 

2) Pump-Probe experiment 

Because the pump and the probe pulses travel through different paths and the pump 

pulse is on a translation stage, the timing between two pulses may vary. If the probe pulse 

enters the sample before the pump pulse (before time zero), no reactions or dynamics will be 
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observed. Time zero occurs when the pump and probe beam travel the same distance and 

enter the sample at the same time. If the probe pulse enters the sample after the pump pulse 

(after time zero), the probe beam will interrogate the change induced in the sample by the 

pump pulse. There are three kinds of phenomena: 

1 ) Bleaching: this occurs when probing in the region where there is ground state 

absorption of the sample. Some ground state sample molecules are promoted 

to the excited state by the pump pulses, thus there are fewer ground state 

molecules to absorb the probe pulses which results in an increase in 

transmission of the probe beam in comparison to before time zero. 

2) Stimulated emission: this occurs when probing in the region where there is 

fluorescence of the sample. Some molecules are promoted to the excited state 

by the pump pulses. When the energy of the probe pulse equals the difference 

between the excited state energy and the ground state energy, it can coherently 

stimulate the emission of photons from the upper levels. The result of 

stimulated emission is an increase in transmission of the probe beam in 

comparison to before time zero. 

3) Excited state absorption: this occurs when the probe pulse is absorbed by the 

excited state of the sample. When this occurs, a decrease in transmission of 

the probe beam would be observed. 

As described above, when an increase of transmission is observed in the experiment, there 

are two possible processes that can happen: ground state bleaching and stimulated emission. 

If the probe pulse is in the spectral region where there is only ground state absorption, then 

the trace monitored corresponds to the ground state bleaching. If the probe pulse is in the 
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spectral region where there is only fluorescence of the sample, then the trace corresponds to 

the stimulated emission. If the probe pulse in the spectral region where the absorption and 

emission spectra overlap, then the trace is complicated, might be only due to one process or 

both. 

3) Data Analysis 

Kinetic traces are collected as a change in transmission (It/Io) of probe versus stage 

delay time. Because the sample population is directly proportional to the change in 

absorbance. the trace is first converted to the change of probe absorbance versus stage delay 

time by the relation: 

A = -log (It/Io ) (2-9) 

Then the rise time of a kinetic trace is determined by the convolution of the probe and pump 

pulses. 

A standard, Nile blue in ethanol, is usually used to determine the width of the pulse. 

Because the pump and the probe pulses have identical pulse width and are shortened by a 

saturable absorber, the pulse can be approximately modeled by a double-sided exponential. 

The fitting procedure is as follows: I) estimate the width of the pulse by measuring the rising 

edge of the standard, 2) generate a series of double sided exponential pulses. 3) fit the 

standard trace by convolution with pulses of various widths until a satisfactory fit has been 

obtained. 4) after finding the good pulse, this pulse is used to fit the kinetic trace obtained in 

the experiment. 
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CHAPTER HI: PHOTOPHYSICS OF HYPERICIN AND 

HYPOCRELLIN A IN COMPLEX WITH SUBCELLULAR 

COMPONENTS: INTERACTIONS WITH HUMAN SERUM ALBUMIN 

A paper published in Photochemistry and Photobiology1 
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Abstract 

Time-resolved fluorescence and absorption measurements are performed on hypericin 

complexed with human serum albumin, HSA, (1:4, 1:1, and -5:1 hypericin.HSA complexes). 

Detailed comparisons with hypocrellin A/HSA complexes (1:4 and 1:1) are made. Our 

results are consistent with the conclusions of previous studies indicating that hypericin binds 
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to HSA by means of a specific hydrogen bonded interaction between its carbonyl oxygen and 

the N(-H of the tryptophan residue in the II A subdomain of HSA. (They also indicate that 

some hypericin binds nonspecifically to the surface of the protein.) A single-exponential 

rotational diffusion time of 31 ns is measured for hypericin bound to HSA, indicating that it 

is very rigidly held. Energy transfer from the tryptophan residue of HSA to hypericin is very 

efficient and is characterized by a critical distance of 94 A, from which we estimate a time 

constant for energy transfer of -3 x 10"15 s. Although it is tightly bound to HSA, hypericin is 

still capable of executing excited-state intramolecular proton (or hydrogen atom) transfer in 

the ~5:1 complex, albeit to a lesser extent than when it is free in solution. It appears that the 

proton transfer process is completely impeded in the 1:1 complex. The implications of these 

results for hypericin (and hypocrellin A) are discussed in terms of the mechanism of 

intramolecular excited-state proton transfer, the mode of binding to HSA, and the light-

induced antiviral and antitumor activity. 

Introduction 

Hypericin and hypocrellin A (Figure 3.1) are naturally occurring polycyclic quinones 

that have gained great interest recently owing to their light-induced biological activity [1-5]. 

They display virucidal activity against several types of viruses, including the human 

immunodeficiency virus (HTV) [6-9], as well as antiproliferative and cytotoxic effects on 

tumor cells [10-12]. Hypericin is also a potent antidepressant [13-15], exhibits light-

dependent inhibition of protein kinase C (PKC) [16,17], and is reported to possess numerous 

other types of biological behavior [19-23]. Hypericin, like other anticancer drugs, also 

induces apoptosis [11,23,24], 
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Figure 3.1 Two-dimensional structures of hypericin, hypocrellin A, and the stentorin 
chromophore. 

Owing to this important biological activity, over the past few years we have been 

studying the photophysics of hypericin and hypocrellin [25-35]. By means of H/D 

substitution, investigation of methoxy analogs, and complementary studies using both 

transient absorption and fluorescence upconversion spectroscopies, we have unambiguously 

demonstrated that the major primary photophysicai process in hypericin and hypocrellin A in 

organic solvents is excited-state intramolecular proton or hydrogen atom transfer. 

Considerable effort was required to demonstrate this fact owing to the unusual mirror image 
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symmetry between absorption and emission spectra, the lack of an H/D isotope effect on the 

proton transfer reaction in hypericin, and the occasional consideration of this ultrafast 

reaction in terms of equilibrium Fôrster-cycle type calculations [36]. 

We have suggested that the labile protons resulting from the intramolecular proton 

transfer reaction may be important for understanding the light-induced biological activity of 

hypericin and hypocrellin A. Notably, hypericin and hypocrellin A acidify their 

surroundings upon light absorption [37-39]. The role of photogenerated protons takes on 

significance in the context of the growing body of literature implicating changes in pH with 

inhibition of virus replication [40], antitumor activity [41,42], and apoptosis [43,44,45]. For 

example, comparative studies for nine perylenequinones, including hypericin, provide 

evidence that the quantum yield of singlet oxygen formation is not sufficient to explain the 

reported antiviral activities of these molecules and that other structural features of 

perylenequinones are involved [46]. In fact, the quantum yield of singlet oxygen from 

hypericin is much less than had initially been presumed. Recently, Jardon and coworkers 

have revised their earlier estimation of a singlet oxygen quantum yield of 0.73 [47,48], 

essentially equal to the triplet yield, to 0.35 in ethanol and less than 0.02 in water [49]. 

Based on this result, mechanisms involving only oxygen clearly cannot explain all the 

activity of hypericin. 

We had previously reported that hypericin does not require oxygen for its antiviral 

activity [5,18,34], This conclusion was based on an inability to estimate accurately low 

oxygen levels in our virus samples. Our most recent results indicate that while antiviral 

pathways independent of oxygen may exist, the role of oxygen in this activity is significant, 

although it seems to differ for hypericin and hypocrellin A. The ability of photogenerated 
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protons to enhance the activity of activated oxygen species [39] is still considered to be of 

importance [50]. De Witte and coworkers have also recently considered the relative role of 

oxygen in the phototoxicity of hypericin against A431 human skin carcinoma cells [51]. 

Although numerous studies dealing with the biological and photophysical properties 

of hypericin have been performed, the mechanism and site of action of hypericin at the 

cellular level is still unclear. Thus a better understanding of the interaction of hypericin with 

various possible cellular targets (membranes, proteins or nucleic acids) is essential for a 

determination of its function in biological systems. For human T47D mammary tumor cells, 

it has been shown that hypericin immediately associates with cell membrane and also 

localizes in the cytoplasm and nucleus after a long-time incubation (3 hr 30min) [52]. And 

recently a study of hypericin in fetal rat neurons was performed, employing both 

fluorescence imaging and subnanosecond time resolution, that indicated localization in the 

membrane as well as in the nucleus [53]. 

Human serum albumin (HSA) is a transport protein in the blood plasma. It binds a 

wide variety of substances, such as metals, fatty acids, amino acid, hormones, and a large 

number of therapeutic drugs [54]. Because of its clinical and pharmaceutical importance, the 

interaction of HSA with a variety of ligands has been studied [55,56]. HSA consists of six 

helical subdomains and its polypeptide back bone is formed by 585 amino acids. HSA has 

two major binding sites denoted IIA and IHA according to the subdomains where they occur. 

The interaction of hypericin with HSA has been studied by various groups [57,58-60]. 

Hypericin in aqueous physiological solution is aggregated [61], and binding with albumin 

helps to solubilize it in monomelic form, which is believed to be important for virucidal 
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action [62]. Burel and Jardon have also noted that the photodynamic properties of hypericin 

are greatly diminished when it is aggregated [63]. 

Previous studies have suggested that the binding site of hypericin was in the III A 

subdomain of the protein, where the hypericin is not completely shielded from the outer 

environment [59.60], Recent surface enhanced Raman (SERS) and resonance Raman (RR) 

studies, however, identify the binding site as the II A subdomain, where the binding occurs 

through an interaction between the carbonyl oxygen of hypericin and the N,-H of the single 

tryptophan residue (VV214) in the protein [57]. 

In this article we discuss the results of time-resolved fluorescence and absorption 

measurements of hypericin and hypocrellin A bound to HSA. An important problem that 

arises in the course of this investigation is understanding the nature of the complex that 

hypericin forms with subcellular components, in particular, HSA. Is this binding specific, 

that is, directed to a particular target site, or nonspecific? What nonradiative processes are 

induced upon binding? As will be seen, drastically different degrees of nonexponential 

fluorescence decay are observed for hypericin and hypocrellin A when they interact with 

HSA. In order to respond to these questions, hypericin was investigated in complex with 

other biological macromolecules whose binding interactions would be expected to present a 

considerable spectrum of variability with respect to that of HSA, namely poly dG-dC, Brij-35 

micelles, and myoglobin. 

Materials and Methods 

Hypericin, hypocrellin A, and the pH probes SNARF, and BCECF were purchased 

from Molecular Probes, and were used as received. Human serum albumin (99%, essentially 
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fatty acid and globulin free), horse heart myoglobin (minimum 90%, lyophilized, essentially 

salt free), polydeoxyguanylic-deoxycytidylic acid (Poly dG-dC), Brij-35 (polyoxyethylene 23 

lauryl ether), and AOT (dioctyl sulfosuccinate) were purchased from Sigma and were used as 

received. 

Preparation of the hypericin-albiunin and hypericin-myoglobin complexes. HSA and 

myoglobin solutions of 1.5 x 10"5 M concentration were prepared in 10-mM phosphate buffer 

(pH 7). A concentrated solution of hypericin in DMSO was added to the protein solution in 

microliter quantities so as to obtain a final DMSO concentration of - 0.8% and a final 

hypericin concentration of 4.0 x 10'6 M. The HSA/hypericin and myoglobin/hypericin 

complexes were equilibrated for 12 hours in the dark. 

For steady-state spectra and time-resolved fluorescence studies we initially prepared a 

complex whose stoichiometry was 1:4 hypericin:HSA where the concentration of HSA was 

1.5 x 10"5 M; and that of hypericin, 4.0 x 10"6 M. We also prepared 1:1 complexes where 

both the HSA and the hypericin concentrations were about 4.0 x 10"6 M. Both the 1:4 and 

the 1:1 hypericin:HSA complexes gave the same results in the fluorescence lifetime and 

anisotropy decay experiments.. 

For time-resolved absorption measurements, in order to obtain a measurable signal 

from the bound hypericin, it was necessary to increase the hypericin concentration to 7.0 x 

10'5 M while keeping HSA at 1.5 x 10"5 M. This provided an -5:1 hypericin:HSA complex. 

Attempts to make a 1:4 hypericin:HSA complex with [HSA] = 3.0 x 10"4 M and [hypericin] 

= 7.0 x 10"5 M resulted in aggregation of HSA. Furthermore, keeping [HSA] = 1.0 x 10"4 M 

in an attempt to make a 4:1 hypericin:HSA complex with [hypericin] = 4.0 x 10"4 M resulted 
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in aggregation of hypericin. Finally a 1:1 hypericin:HSA complex was prepared where the 

concentration of each was 7 x 10° M. The association constant between hypericin and HSA 

has been given as 7.5 x 105 M"1 [58] and 1.3 x 107 M"1 [62]. 

Preparation of the hypericin-poly dG-dC complex. Ten units (one unit when 

dissolved in 1 mL buffer gives an absorbance of 1 at 260 nm in a 1 cm cell) of poly dG-dC 

was dissolved in 1 mL of 10 mM phosphate buffer (pH 7) by stirring for 24 hours. A 

concentrated solution of hypericin in DMSO was added in microliter amounts in order to 

obtain a final hypericin concentration of 3.0 x 10"6 M and a final DMSO concentration of 

0.5%. The solution was stirred for 24 hours in the dark before performing experiments. 

Attempts to increase the concentration of hypericin for transient absorption experiments 

resulted in aggregation, so that pump-probe studies could not be performed. 

Preparation of hypericin in micelles. To a concentrated (1.25 x 10"3 M) solution of 

Brij-35 in water a concentrated solution of hypericin in DMSO was added so as to have a 

final hypericin concentration of 2.0 x 10'6 M. 

Time-resolved studies. Steady-state absorption spectra were obtained on a Perkin 

Elmer Lambda 18 double-beam UV-vis spectrophotometer with 1-nm resolution. Steady-

state fluorescence spectra were obtained on a SPEX Fluoromax with a 4-nm band pass, 

corrected for detector response. The apparatus for time-correlated single-photon counting 

and the 30-Hz pump-probe transient absorption spectrometer are described in detail 

elsewhere [25-27]. Fluorescence decays are collected for a maximum of 10,000 counts in the 

peak channel. The polarized fluorescence traces used to obtain fluorescence anisotropy 

decay parameters were collected to a maximum of 20,000 counts in the peak channel. 
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Fluorescence upconversion. The fluorescence upconversion apparatus is based on a 

homemade Ti:sapphire laser [64] producing pulses of less than 50 fs fwhm at a repetition rate 

as high as 90 MHz. The Ti:sapphire oscillator is pumped by an intracavity frequency-

doubled Nd: YVO4 continuous-wave laser (Millennia V, Spectra Physics) and produces 

tunable (750-850 nm) pulses which are precompensated for group velocity dispersion with a 

pair of glass prisms and a gold mirror. The fundamental beam is frequency doubled by a 

type-I, 1.0-mm LBO crystal from Super Optronics. These frequency-doubled excitation 

pulses, which typically were centered about 414 nm, are separated from the fundamental by a 

400-nm dielectric mirror. To precompensate for group velocity dispersion a pair of quartz 

prisms oriented at Brewster's angle is used before focusing into the sample with 15 cm 

convex lens with anti-reflection coating for 400 nm. In order to reduce energy losses during 

precompensation a 400-nm zero-order quartz half-waveplate is used to minimize reflections 

at air-prism interfaces. The polarization orientation of the excitation light is then adjusted to 

the desired angle by another similar half-waveplate. For room temperature measurements, the 

sample was circulated in 1 mm flow cell by means of a dye laser pump with voltage-

controlled rotation speed. The excitation light is removed from fluorescence by a 450-nm 

long-pass filter. The residual fundamental pulses are used as the gate to upconvert the 

fluorescence, which is collected with an LMH-10x microscope objective (OFR Precision 

Optical Products) coated for near infrared transmission. They are then focused by a 15-cm 

quartz lens onto a type-I 0.4-mm BBO crystal (cut at 31° and mounted by Quantum 

Technology, Inc.). The polarization of both excitation and gate beams is controlled with a set 

of zero-order half-wave pdates coated for 400 and 800 nm respectively. The upconverted 

signal is sent directly into a H10 (8 nm/mm) monochromator (Jobin Yvon/Spex Instruments 
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S.A. Group) coupled to a Hamamatsu R760 photomultiplier equipped with UG11 UV-pass 

filter and operated at maximum sensitivity. The photomultiplier output is amplified with two 

stages (total by a factor of 25) by a Stanford Research Systems SR-445 DC-300 MHz 

amplifier with input terminated at 500 A and carefully calibrated after a long ( 1-2 hours) 

warm-up. Photon arrival events are registered with SR400 gated photon counter operated in 

CW mode with threshold level of 100-120 mV. At each delay step signal is obtained by 

averaging 3-5 samples collected for 1 s each. To reduce fluctuations due to laser flicker or 

sample instability (e.g. air bubbles in the flow cell) data are resampled if significant relative 

standard deviation or relative drift is detected. This approach also helps eliminate errors in 

data transmission lines. A translation stage (Klinger Scientific) with a resolution of 1 step/p, 

m or 10 microsteps/^im is used to delay gate pulses and is controlled by a computer via an 

IEEE interface and Klinger Scientific CD-4 motor driver. The instrument response function 

is obtained by collecting a cross correlation function of the second harmonic and the 

fundamental (with the long-pass filter removed): The resulting third harmonic intensity is 

plotted against delay time. Cross correlation functions typically have a fwhm of 280-300 fs 

and for time scales greater 20 ps are assumed to be delta-function like. All curves were fit 

and deconvolved from the instrument response function using an iterative convolute-and-

compare nonlinear least-squares algorithm. 

Average pump power was about 40-60 mW as measured at the second prism for 

precompensation. Spectral resolution was limited by the bandwidth of the upconversion 

crystal (BBO) and was estimated to be ±3 nm. 
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A sample of a total volume of -10 ml was constantly pumped through a I-mm quartz 

flow cell by a dye circulator. All experiments excluding sample preparation were performed 

in a dark room. 

An attempt was made to prepare a chromophore in buffer solution to serve as a 

reference sample for HSA complexes. Unfortunately, hypericin emission is efficiently 

quenched in the absence of the hydrophobic environment provided by the protein, and the 

quantum yield was not sufficient to obtain a reasonable signal. Hypocrellin A was 

essentially nonfluorescent both with and without the protein, which is why no fluorescence 

upconversion results for hypocrellin A are reported here. 

Attempts to observe light-induced acidification. Light induced pH drops by hypericin 

have been observed in different environments such as vesicles and 3T3 cells [37-39]. We 

have employed the pH probes SNARF (Molecular Probes) to see if there is any light induced 

pH drops of hypericin bound to HSA. For the pH drop experiments, the solution was purged 

with argon for at least 30 minutes (argon was flowed gently over the top of the solution so as 

to prevent the formation of bubbles). The solutions are illuminated by the fluorimeter for 10 

minutes at 550 nm (4-nm band pass). The hypericin/HSA complex was studied in pure water 

with and without buffer; but the SNARF spectra remained unchanged after illumination. 

Consequently, a control experiment was performed to determine if there was any light 

induced pH drop of hypericin in a reverse micellar system in the absence of HSA. The 

system studied in this case was hypericin in n-heptane/AOT/water reverse micelles; and the 

pH probe used was SNARF. The concentration of AOT used was 0.5 M, and the amount of 

water added was 200 nL. The concentration of hypericin and SNARF were 2.2 x 10 * M and 

6.4 x 10'6 M. The solution was kept in the dark and purged with argon for one hour before 
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illumination. The second harmonie of the Nd-YAG (532 nm) was used to illuminate the 

solution, and the power was a few microwatts. The composite fluorescence spectrum of 

hypericin and SNARF was recorded as soon as it was illuminated by the laser light and five 

minutes after. The two spectra showed no change in relative intensity, and consequently 

showed no indication of a light-induced pH change. 

Results 

Steady-state Spectra 

Figures 3.2a and 3.3 present the fluorescence excitation spectra of hypericin in 

DMSO and in sulfuric acid (where the carbonyl groups are protonated). These differ in a 

number of ways. First, the sulfuric acid spectrum is red shifted with respect to that of 

DMSO. Secondly, the relative intensity of the 400-500 nm region of the sulfuric acid 

spectrum has increased considerably with respect to the DMSO spectrum. The emission 

spectrum in sulfuric acid is also red shifted compared to that in DMSO. 

For purposes of comparison, Figures.3.2a and 3.4 present the steady-state excitation 

and emission spectra of hypericin in complex with HSA and poly dG-dC, along with the 

spectrum in DMSO. In complex with HSA and with poly dG-dC, the excitation spectrum of 

hypericin is closer to that in sulfuric acid than in DMSO. The emission spectra are also red 

shifted, though not as much as in sulfuric acid. 

The fluorescence quantum yield of hypericin/HSA (1:4) is 0.18, compared to 0.35 for 

hypericin in DMSO [32]. The emission intensity of hypericin/poly dG-dC is very much 

weaker. The changes in the hypericin excitation spectra induced upon binding it to either 

HSA or poly dG-dC can be interpreted in terms of an interaction through its carbonyl oxygen 

if the above comparisons with the sulfuric acid spectra are justified. This interpretation is 
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Figure 3.2 (a) Fluorescence excitation (Xem - 650 nm) and emission (X» = 550 nm) spectra 
of hypericin in HSA (1:4 complex, [HSA] = 1.5xlO-î(M) and [hyp] = 7xlO"6(M), dotted line) 
and in DMSO (solid line). 

(b) Fluorescence excitation (X«, = 650 nm for DMSO and 600 nm for HSA) and 
emission(XcX = 414 nm) spectra of hypocrellin A in HSA (1:1 complex, [HSA]=[hypocrellin] 
= 3.ÔX10"6 (M), dotted line) and in DMSO (solid line). Greater noise in these data indicates 
considerably higher quenching efficiency as compared to hypericin/HSA complex. 
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Figure 3.3 (a) Fluorescence excitation spectra of hypericin in sulfuric acid (Xem = 750 nm, 
dotted line) and in DMSO (Xnn = 650 nm, solid line). 

(b) Fluorescence emission spectra (X» = 550 nm) of hypericin in sulfuric acid 
(dotted line) and in DMSO (solid line). 



www.manaraa.com

53 

i  

i 

03 

i l  — Q) 
<0 O 

If 
g 

i 
0.8 
0.6 
0.4 
0.2 

0 

i 1 r 

300 

4.00 
0.00 

-4.00 
10000.00 
8000.00 
6000.00 
4000.00 
2000.00 

0.00 

j I i L 

400 500 600 

wavelength (nm) 

600 650 

wavelength (nm) 

700 

4 8 

time (ns) 

12 

Figure 3.4 (a) Fluorescence excitation spectra (Xem = 650 nm) of hypericin in poly dG-dC 
(dotted line) and in DMSO (solid line). 

(b) Fluorescence emission spectra (Xcx = 550 nm) of hypericin in poly dG-dC 
(dotted line) and in DMSO (solid line). 

(c) Fluorescence decay of hypericin bound to poly dG-dC: Xcx = 570nm; 
Xem>610nm, %2 = 1.30. 
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consistent with Raman studies which suggest that the carbonyl oxygen of hypericin interacts 

with the N|-H of the single tryptophan residue present in [I A subdomain of HSA [57]. 

Raman studies also suggest that the hypericin interaction occurs via its carbonyl and peri 

hydroxy! groups with the N7 nitrogen of the guanine residue in poly dG-dC [57,65-67]. The 

reduction of the fluorescence quantum yield of hypericin/HSA with respect to that in DMSO 

may be due to the H-bonding interaction of the carbonyl oxygen with the tryptophan residue, 

or a part of hypericin is projected outside of the protein, exposed to the solvent, or may be 

due to both. Similarly, in nucleic acid the very low emission can probably be accounted for 

greater interaction with the guanine residue, and/or greater exposure to the solvent. (It may 

be argued that the reduction of the fluorescence quantum yield of hypericin noted above is 

due to the formation of hypericin aggregates. At the micromolar concentrations used for the 

hypericin/HSA spectra, there was no evidence in the absorption spectra for aggregate 

formation. We did not, however, have enough nucleic acid to obtain a properly corrected 

absorption spectrum of the nucleic acid complex.) 

Fluorescence Lifetime and Anisotropy Decay of Hypericin and Hypocrellin A in Complex 

with HAS 

Tryptophan 214 of HSA. The fluorescence and fluorescence anisotropy decay parameters of 

the tryptophan of HSA are presented in Tables 3.1 and 3.2. In HSA, the tryptophan residue 

has a nonexponential fluorescence decay, which is best described by a sum of three 

exponentials. Its anisotropy decay is best characterized by a double exponential. These 

results are consistent with those obtained by other workers [68]. The double exponential 

anisotropy decay of the tryptophan can thus be interpreted as arising from both rapid 

restricted local depolarizing motions and the overall rotational diffusion of the protein. The 
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Table 3.1. Fluorescence lifetime parameters3. 

Sample a. Ti(ps) T2(ps) a? T3(ps) 

tryptophan 

in HSAb 
0.29±0.01 363±30 O.23ÎO.O2 2607±200 O.47+O.O4 77871500 

tryptophan in 

hypericin/HSA 

complex" 

0.3210.03 296±45 0.29±0.01 2300±100 O.39+O.O3 77201470 

hypericin in 

hypericin/HSA 

complex' 

0.51 ±0.01 2850+350 0.49±0.01 5000±580 

hypocrellin A in 

hypocrellin/HSA 

complex' 

0.4 

(0.41) 

89 

(51) 

0.25 

(0.12) 

540 

(490) 

0.35 

(0.47) 
1500 ( 1450) 

hypericin in 

myoglobin' 
0.33 180 0.27 1600 0.40 5800 

hypericin in 

Brij-35 micelles' 
0.05 1000 0.95 6500 

hypericin in 

poly dG-dC6 
0.37 32 0.43 1300 0.20 3400 

a Fluorescence lifetimes were fit to a sum of up to three exponentially decaying 
components and had the form: F(t) = a, exp(-t/T,) + a, exp(-t/Tz) + ag expC-t/Ts). The 
absence of values for a% and T3 implies that the lifetime was adequately described by a 
double exponential decay. %" < 1.3 for all data presented in the Table. 

b For excitation and detection of the emission of the tryptophan residue of HSA, Xcx = 
288 nm, Xem = 300-400 nm. 

c For excitation and detection of hypericin and hypocrellin A, Xe* = 570 nm, Xcm ^ 610 
nm. Both 1:4 and 1:1 hypericin:HSA complexes gave identical results. Data shown 
here are for the 1:4 complex. For hypocrellin A, data for both 1:4 and 1:1 complexes 
are shown. The values in parentheses are those for the 1:1 complex. 
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Table 3.2. Fluorescence anisotropy parameters3. 

sample fi Trl (PS) f2 Tr: (PS) 

tryptophan in HSAb 0.07±0.0l 920140 0.1210.01 2800013000 

hypericin in HSA' 0.3210.01 3100014000 

hypocrellin A in HSA' 
0.10 

(0.14) 

252 

(165) 

0.05 

(0.12) 

31000 

(31000) 

hypericin in Brij-35 micelles' 0.13 860 0.17 4700 

hypericin in 

EtOH/MeOH( 1:1 )C"J 
0.3510.01 83110 

a Fluorescence anisotropy decays were fit to a sum of up to two exponentially decaying 
components and had the form: F(t) = ri exp(-t/iri) + r% exp(-t/rr2). The absence of 
values for r% and Tri implies that the lifetime was adequately described by a single 
exponential decay. 

b For excitation and detection of the emission of the tryptophan residue of HSA, Xex = 
288 nm, Xcm =300 - 400 nm. 

c For excitation and detection of hypericin and hypocrellin A, Xcx = 570 nm, Xem ^ 610 
nm. Both 1:4 and 1:1 hypericin:HSA complex gave identical results. Data shown 
here are for the 1:4 complex. For hypocrellin A, data for both 1:4 and 1:1 complexes 
are shown. The values in parentheses are those for the 1:1 complex. 

d Reference 31. 

relative contributions of these two effects are related by the order parameter, S2, from which 

can be calculated a hypothetical semi cone angle in which the tryptophan diffuses. For 

probes attached to globular proteins, the order parameter, S2, is a model independent measure 

of the extent to which restricted motion can occur: S2 = [r(t)/r(0)] exp(t/Tr) = r(0+)/rCfKO), 

where Tr and r(0>) are determined by the fit of the long-time behavior of the anisotropy decay 
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(the overall protein reorientation or tumbling) to a single exponential and are equivalent to T: 

and r:(0), respectively (69). rert<0) = n(0) + r;(0). For the tryptophan residue in HSA, S2 = 

0.8 ± 0.01. The order parameter can be related to a hypothetical cone semiangle. Go, within 

which the transition dipole moment can diffuse: S = ( 1/2) cosQo ( 1 + cosOo). For the 

tryptophan residue in HSA, 9o = 30 ± 1°. 

Hypericin. In comparison, hypericin has a single-exponential fluorescence decay of 

-5.5 ns in all nonaqueous pure solvents. Bound to HSA (for both 1:4 and 1:1 complexes), 

however, its fluorescence decay is best described by a double exponential with a short 

component of -2.5 ns (Figure 3.5 and Table 3.1). In order to understand what induces the 

nonexponential decay, hypericin was also studied in Brij-35 micelles and in complex with the 

protein myoglobin. In both cases, the resulting fluorescence decay is nonexponential. In the 

case of myoglobin, where hypericin can bind only to the surface of the protein, the decay is 

best described by a triple exponential (Table 3.1). Thus, in HSA the presence of this short 

component may arise from new nonradiative decay processes for a subset of hypericin 

molecules in the binding pocket, protruding into the solvent, or bound to the surface of the 

protein, or both. 

The polarized fluorescence decay curves of hypericin bound to HSA are given in 

Figure 3.5. The limiting value for the anisotropy, r(0), for hypericin bound to the protein is 

0.32 (Table 3.2). The anisotropy decay is single exponential and -400-fold longer than that 

for the free molecule (31 ns in the protein as compared to -80 ps in a 1:1 ethanol/methanol 

mixture [31]). This large rotational time constant is obviously a signature of the overall 

protein motion, thus indicating that hypericin is very rigidly bound to HSA. The anisotropy 

decay of hypericin bound to HSA must be considered carefully in light of the lifetime data 
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Figure 3.5 (a)Fluorescence decay of hypericin bound to HSA- = 570 nm; X^n >610 nm, 
X2 = 1.10. 

(b) Fluorescence anisotropy decay of hypericin bound to HSA Xex = 570 nm; X 
an > 610 nm, x2 = 1 12. (The anisotropy decay is independent of the stoichiometry of the 
complex. Data not shown. See Table 3.2). 
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discussed immediately above. Chromophores bound to proteins that exhibit no rapid 

restricted motion (with an apparatus providing -50 ps time resolution) are extremely rare. 

The example of the single tryptophan residue buried in the interior of Pseudomonas 

aeruginosa azurin is one example [70]. The surfaces should be much less rigid and more 

disordered than the interiors. In addition, the surfaces are exposed to interactions with 

solvent. Consequently, the fluorescence anisotropy decay of the single surface exposed 

tryptophan residue in Alcaligenes faecalis azurin does exhibit rapid restricted motion, as is 

expected [70]. We thus conclude that the single-exponential anisotropy decay of 31 ns for 

hypericin bound to HSA arises from hypericin molecules rigidly held in the binding pocket, 

but in sufficiently different conformations to experience different nonradiative interactions 

with neighboring amino acid residues. If there are surface-bound hypericin molecules, the 

signal-to-noise ratio of our experiment is not sufficient to detect them in the anisotropy 

decay. 

Bound to poly dG-dC, the fluorescence intensity of hypericin was too low to permit 

time-resolved polarization studies. However, the time-resolved fluorescence (Figure 3.4c) 

shows a nonexponential decay, which can be best fit by a sum of three exponentials (Table 

3.1). 

Hypocrellin A. The effects of aqueous solvation and of binding to HSA on the 

fluorescence anisotropy decay and lifetime of hypocrellin A are illustrated in Figs.3.6 and 

3.7. There are considerable differences with respect to hypericin: 

1) The fluorescence lifetime and anisotropy decays of the hypocrellin A/HSA complex 

depend on stoichiometry. Different kinetics are obtained for the 1:4 and the 1:1 

complexes (Figure 3.6 and Tables 3.1 and 3.2). Most notable are the relative 
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Figure 3.6 (a) Fluorescence anisotropy decay of hypocrellin A/HSA (1:4) in buffer. A fit to 
a double exponential yields r(t) = 0.10 exp(-t/0.25 ns) + 0.12 exp(-t/31 ns), x2 = 1 05. A fit 
of the lifetime to a triple exponential yields F(t) = 0.35 exp(-t/ 1 5ns) + 0.25 exp(-t/0.54 ns) + 
0.40 exp(-t/0.09 ns), x2 = 1 0 (data not shown). The order parameter for this complex (1:4) is 
0.54 and the half angle is 35.8°. See Table 3.2. 

(b) Fluorescence anisotropy decay of hypocrellin A/HSA (1:1) in buffer. A fit to 
a double exponential yields r(t) = 0.14 exp(-t/0.17 ns) + 0.05 exp(-t/31 ns), x2 = 1 08. A fit 
of the lifetime to a triple exponential yields F(t) = 0.47 exp(-t/l ,45ns) + 0.12 exp(-t/0.49 ns) 
+ 0.41 exp(-t/0.05 ns), x2 = 1-15 (data not shown). The order parameter for this complex 
(1:1) is 0.28 and the half angle is 50.2°. See Table 3.2. 
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amplitudes of the shorter and 31-ns components of the anisotropy decays. Such an 

effect is not apparent for the hypericin/HSA complexes. 

2) The steady-state absorption spectrum of hypocrellin A is much less sensitive to the 

presence of water than that of hypericin (compare Figs.3.7a and 3.8a), as measured by 

the perturbation of the lowest energy transition upon addition of water. 

3) The fluorescence lifetime of hypocrellin A is much less sensitive to the presence of 

water that that of hypericin (Figs.3.7c and 3.8c). 

4) The fluorescence decay of hypocrellin A bound to HSA is more similar to that of 

hypocrellin A in a 1% DMSO solution compared to hypericin bound to HSA (Figs. 

3.7b and 3.8b). 

Based on these fluorescence results, it is difficult to determine with any degree of 

certainty to what extent and in what manner hypocrellin binds to HSA. For example, the 

fluorescence lifetime data in mixed DMSO/water solutions clearly indicate that hypocrellin is 

much more hydrophilic than is hypericin. We tentatively suggest that hypocrellin is 

aggregating nonspecifically at the surface of the protein. 

Investigating Ultrafast Excited-state Processes by Transient Pump-probe Absorption and 

Fluorescence Upconversion Techniques 

Hyperici: Transient absorption. In pump-probe transient absorption experiments, we 

have discovered that stimulated emission can be induced from the excited state of hypericin 

in the region of 600-660 nm [25-27]. This stimulated emission grows with a time constant of 

6-10 ps in all solvents, except sulfuric acid, where it appears within the duration of our laser 



www.manaraa.com

62 

004 100# DMSO I 

33% DMSO | 

10% DMSO | 

1% DMSO 

HSA/buffer 
"3 

550 
wavelength (nm) 

350 450 650 750 

hypocrellin A 
73 

06 

1 <7c DMSO / water 
04 

Z 
HSA / buffer 

o 3 4 

100% DMSO 

g 08 33% DMSO 
hypocrellin A 

0.6 

I % DMSO 

0 J 4 
time (ns) 

Figure 3.7 (a) Absorbance spectra of hypocrellin A in 1:1 mixture with HSA in buffer (solid) 
and in DMSO/water mixtures of various proportions: 1% (dotted), 10% (long dashed), 33% 
(short dashed) and 100% DMSO (dash-dot). These spectra were scaled to compensate for 
slightly different chromophore concentration. 

(b) Comparison of normalized lifetime decay traces in mixture with HSA (1:1 
ratio) and in 1% DMSO/water solution. F(t) = 0.985exp(-t/4.2 ps)+0.002exp(-t/235 
ps)+0.013exp(-t/1450 ps) for 1% DMSO. F(t) = 0.55exp(-t/63 ps)+0.19exp(-t/644 
ps)+0.26exp(-t/1620 ps) for HS A/buffer solution. 

(c) Normalized lifetime decay traces of hypocrellin A in DMSO/water mixtures of 
different proportions. F(t) = 0.97exp(-t/4.2 ps)+0.02exp(-t/235 ps)+0.0lexp(-t/1450 ps) for 
1% DMSO. F(t) = 0.83exp(-t/l.2 ps)+0.03exp(-t/363 ps)+0.13exp(-t/1335ps) for 33% 
DMSO. F(t) = 1.00 exp(-t/1310 ps) for 100% DMSO. The instrument response function is 
shown by the dotted line. It is also artificially shifted with respect to the fluorescence 
decays. 
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Figure 3.8 (a) Absorbance spectra of hypericin in 1:1 mixture with HSA in buffer (dash-
dotted) and in DMSO/water mixtures of various proportions: 1% (solid), 10% (long dashed), 
33% (short dashed) and 100% DMSO (dotted). These spectra were scaled to compensate for 
slightly different chromophore concentration. 

(b) Comparison of normalized lifetime decay traces of hypericin with HSA (1:1 
ratio) and in 1% DMSO/water solution. F(t) = 0.96exp(-t/12 ps)+0.03exp(-t/304 
ps)+0.0 lexp(-t/3680ps) for 1% DMSO. F(t) = 0.75exp(-t/3050 ps)+0.25exp(-t/5770 ps) for 
HS A/buffer solution. 

(c) Normalized lifetime decay traces of hypericin in DMSO/water mixtures of 
different proportions, is shown in the insert F(t) = 0.96exp(-t/12 ps)+0.03exp(-t/304 
ps)+0.01exp(-t/3680ps) for 1% DMSO. F(t) = 0.91exp(-t/1.4 ps)+0.05exp(-t/264 
ps)+0.04exp(-t/3380ps) for 10% DMSO. F(t) = 0.41exp(-t/190 ps)+0.59exp(-t/3870ps) for 
33% DMSO. F(t) = 1.00 exp(-t/5580 ps) for 100% DMSO. The instrument response 
function is shown by the dotted line. It is also artificially shifted with respect to the 
fluorescence decays. 
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pulses. We have argued that this transient is a signature of excited-state intramolecular 

proton (or hydrogen atom) transfer between the hydroxy! groups peri to the carbonyl. This 

interpretation has been confirmed in numerous experiments involving hypericin analogs 

[32.33] and by the fluorescence upconversion technique [34]. Figure 3.9 presents the 

stimulated emission transients of hypericin in sulfuric acid, DMSO and in -5:1 and 1:1 

complexes with HSA. 

The curves are distinctly different; and when the transients in DMSO and the protein 

are normalized and fit globally, the amplitude for the rise time of hypericin is smaller in HSA 

(0.36) than in DMSO (0.65) for the -5:1 complex. It is thus possible to interpret these results 

as indicating that the excited-state proton or hydrogen atom transfer of hypericin is partially 

reduced, but not stopped completely, when it is complexed with HSA: i.e., that while one of 

the carbonyl groups is complexed to the Ni-H of the tryptophan residue, the other one is free 

to execute excited-state proton transfer. Because the ratio of hypericin to HSA in this 

experiment is approximately 5 to 1, the possibility that the observed kinetics are a 

superposition of intramolecular proton transfer reactions of surface-bound hypericin and 

pocket-bound hypericin cannot be unambiguously excluded. For example, it may be argued 

that the transient in Figure 3.9c represents at least two different populations of hypericin 

molecules: those in which intramolecular proton transfer is completely inhibited because 

they are pocket bound and one of their carbon y Is is coordinated to the N-H proton; and those 

that are bound to the surface and free to execute intramolecular proton transfer. 

In order to investigate this possibility, the 1:1 complex of hypericin and HSA was 

investigated. In the 1:1 complex, the rising component disappears, indicating that the 

intramolecular proton transfer process has been impeded. 
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Figure 3.9 Transient absorption traces of hypericin in different environments. The traces 
are normalized to the maximum absorption in the figure. Xpump = 588 nm; Xpn>bc = 600 nm. 
(a) Sulfuric acid: AA(t)/AAm,x = -1.0 exp(-t/ac). 
(b) HSA: AA(t)/AAm.x = -1.0 exp(-t/ao); 1:1 complex, [HSA] = [hyp] = 7xl0"5 M 
(c) HSA: AA(t)/AAm,x = -0.36 [exp(-t/6.0 ps )— IJ - 0.64; -1:5 complex; [HSA] = 1.5xI0"5 

M; [hyp] = 7xlO"5 M 
(d) DMSO: AA(t)/AAnux = -0.65 [exp(-t/6.0ps)- 1] -0.35. 

Fluorescence upconversion of the I: J complex. Because of the possibility that the 

rising component was obscured in the 1:1 complex by the presence of other absorbing 

species or because the signal-to-noise ratio was insufficient, we searched for the rising 

component with the fluorescence upconversion technique, which measures only emission. 

Figures 3.10 and 3.11 present fluorescence upconversion traces of the 1:1 hypericin/HSA 

complex at two different emission wavelengths, 606 and 653 nm, corresponding to the first 

two maxima of the emission spectrum of the hypericin/HSA complex (Figure 3.2a). On the 
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Figure 3.10 (a) Fluorescence upconversion at the "magic angle" of 1:1 hypericin:HSA 
complex, [HSA] = lxlO"4 M, Xcx = 414 nm, Xcm = 606 nm. A fit to double exponential yields: 
F(t) = 0.12 exp(-t/50 ps) + 0.88 exp(-t/1320 ps). The 50-ps component is not observed with 
the limited resolution afforded by time correlated single photon counting measurements. The 
insert shows results obtained on a 20 ps time scale. 

(b) Parallel and perpendicular fluorescence upconversion traces of the 1:1 
hypericin:HSA complex, Xcx = 414 nm, Xcm = 606 nm. Anisotropy decay fit with a single 
decaying component yields r(t) = -0.03 ± 0.01 exp(-t/2 ± I ns). The large relative error is due 
to the small value of limiting anisotropy at this excitation wavelength. The insert shows 
results obtained on a 20 ps time scale. That a value of -2 ns instead of 31 ns (Table 3.2) is 
obtained is a result of collecting the data on a full scale of only 1.3 ns. 
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Figure 3.11 (a) Fluorescence upconversion at the "magic angle" of 1:1 hypericin:HSA 
complex, [HSA] = lxlO"4 (M); Xcx = 414 nm, Xcm = 653 nm. 

(b) Parallel and perpendicular fluorescence upconversion traces of the 1:1 
hypericin:HSA complex, X„ = 414 nm, Zem = 653 nm. These data were collected on the short 
timescale only. 

shortest time scales investigated (20 ps full scale) there was no evidence for a rising 

component in the fluorescence signal, confirming the conclusions obtained from the transient 
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absorption measurements, that intramolecular proton transfer is impeded in the 1:1 

hvpericin/HSA complex. 

Hypocrellin A. Because the fluorescence of hypocrellin A is so strongly quenched in 

the complex with HSA (Figures 3.6 and 3.7), it was impractical to obtain upconversion data. 

Transient absorption experiments with the 1:1 complex give no indication of excited-state 

proton transfer and only indicate a rapid decay of an excited state (-32 ps), consistent with 

the photon counting data (Figures 3.6 and 3.7). 

Energy Transfer in the HSA Complexes 

Between the tryptophan of HSA and hypericin . The emission spectrum of tryptophan 

overlaps the hypericin absorption spectrum, thus providing the possibility of energy transfer 

from tryptophan to hypericin. The total integrated emission intensity of the tryptophan 

residue in albumin is greater when there is no hypericin complexed to it. The ratio of the 

integrated emission intensity of tryptophan (after correcting for the inner filter effect due to 

hypericin absorption) without and with hypericin is 1.5, i.e. there is a 33% decrease in the 

integrated emission intensity. Figure 3.12 presents the corrected emission spectra of the 

tryptophan emission in the presence and in the absence of hypericin. The ratio of the 

integrated emission of hypericin at two wavelengths, 295 and 550 nm, was determined as 

follows [69]: 

(PfWi) 

F (^2 ) i-io-A(/*i) ™ 
(3-1) 

J/,„(zl2.V)di7 
C(A2) 

0 
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where, A(À,) is the absorbance (optical density) at the excitation wavelength. Àj, /em(/.„ v ) is 

the emission intensity at the excitation wavelength À, and c(ÀJ is a correction factor taking 

into account fluctuations of the excitation intensity. The integrated emission (fluorescence 

quantum yield) of hypericin is 0.36 in DMSO and 0.53 when it is complexed with HSA (in 

this latter case, correction is made for the "inner filter effect" due to tryptophan absorption at 
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Figure 3.12 Corrected tryptophan emission of HSA in the presence (dashed line) and in the 
absence (solid line) of hypericin. Inset: Decay curve of the tryptophan residue of HSA in the 
absence (top) and in the presence (bottom) of hypericin. X„ = 288 nm; 300 < Xcm 5 400 nm. 
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295 nm). Thus there is a 47% increase in the integrated emission of hypericin when excited 

at 295 nm, in the presence of albumin. This is in fair agreement with the percentage decrease 

of tryptophan emission. The fluorescence decay curves for tryptophan in the presence and in 

absence of hypericin are clearly different (Figure 3.12). The tryptophan residue in HSA has 

an emission maximum at 340 nm (compared to that of tryptophan in buffer at 352 nm) and 

the emission maximum has a slight red shift (342 nm) when complexed with hypericin. The 

quantum yield of tryptophan in HSA is 0.12 as compared to that of 0.18 for tryptophan in 

water at pH 7 [69,71], The average fluorescence lifetime of tryptophan in HSA decreases by 

14% when hypericin is bound (data not shown). We were, however, unable to see any rise in 

the time resolved fluorescence of hypericin when exciting at 295 nm. This may be probably 

due to a very fast energy transfer that cannot be resolved with our instrument or whose 

amplitude is small compared to the prompt fluorescence arising from the direct excitation of 

the hypericin. Such a rapid energy transfer can explain our inability to observe a rise time in 

fluorescence emission of hypericin in our time-correlated single-photon-counting 

experiments. 

In order to determine the efficiency of this energy transfer, we estimated the so-called 

critical distance. The efficiency of the nonradiative energy transfer in a Forster energy 

transfer mechanism is determined by, among other things, Ro, the critical distance at which 

the rate of energy transfer is equal to the inverse of the fluorescent lifetime of the donor. 

(3-2) 

6 _ 9000(lnl0)<t>p 2 °f 

0 128*ViV 3 J \F D {v )e A {v )v~*dv  (3-3) 
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In the above equations ker is the rate of energy transfer, TF is the average lifetime of the 

tryptophan donor (3.4 ns), R is the distance of separation between the donor and acceptor, n 

is the index of refraction of the medium, N is Avogadro's number, <T>O is the fluorescence 

quantum yield of the tryptophan donor (0.12), FD( V ) is the donor emission normalized to ' 

unit area on wavenumber scale, and EA( V ) is the decadic molar extinction coefficient (in L 

'mor'cm"1) on a wavenumber scale. Ro calculated for the tryptophan-hypericin complex is 

94 A. This large value for Ro is not surprising because there is a high degree of spectral 

overlap (Figure 3.13). Assuming the actual distance between these molecules to be 10 À 

(center to center) the rate for energy transfer is 3.8 x 10U s ' (3 x 10"15 s). In order to resolve 

the energy transfer between tryptophan and hypericin, the two chromophores would need to 

be separated by 55 Â: such a separation, given the parameters of the calculation, yields an 

energy transfer time of 50 ps. We thus conclude that energy transfer between tryptophan and 

hypericin is too rapid to be observed with our apparatus. (We note that if the donor and 

acceptor are in physical contact, a Fôrster dipole-dipole mechanism may not be a 

quantitatively appropriate model for the energy transfer.) 

If we assume that even in the 1:4 hypericin.HSA complex hypericin is nonspecifically 

bound to the surface of HSA (which is in agreement with the nonexponential fluorescence 

decay of hypericin in this complex) as well as specifically coordinated to the tryptophan 

residue, a range of energy transfer times are expected. These can only be crudely estimated 

since even though a published structure for HSA exists [72,73], its coordinates have not been 

deposited in any data bank of which we are aware. The dimensions of HSA are 

approximately 30 x 80 x 80 A. If we assume for a case of nonspecific binding that the 

tryptophan and hypericin lie on opposite extremes of the HSA the energy transfer time will 
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Figure 3.13 Spectral overlap between hypericin absorption and the tryptophan emission 
from HSA (in phosphate buffer at pH 7 and 22°C). 

be 0.4 ps at 30 Â and 790 ps at 80 A. If all the hypericin molecules had a 10-Â center-to-

center distance from tryptophan, it is expected that a negligible amount of tryptophan 

fluorescence be observed. Since this is not the case, we conclude that there is nonspecific 

binding of hypericin to HSA even in the 1:4 hypericin.HSA complex. 

Between the tryptophan of HSA and hypocrellin A . We have no evidence for energy 

transfer from tryptophan to hypocrellin. Ina 1:1 complex, the quantum yield of hypocrellin 

only increases 6%, which is negligible within the margin of error. In a 1:4 hypocrellin/ 

HSAcomplex, the hypocrellin quantum yield decreases by 28%, which implies aggregation 
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of hypocrellin. These results are again consistent with hypocrellin A binding to the surface 

of HSA in a nonspecific manner. 

Discussion and Conclusions 

A comparison of the steady-state spectra of hypericin in DMSO and sulfuric acid and 

in complex with HSA and poly dG-dC suggests that there is a strong interaction of the 

hypericin carbonyl group with the latter two macromolecules. Specific interactions of 

hypericin with DNA and its model compounds were studied by surface enhanced and 

resonance Raman spectroscopy [57,65-67]. The results indicate that there is a specific site 

interaction between the terminal hydroxyl and carbonyl groups of hypericin and the guanine 

residues in DNA probably through the N? atom. Raman studies also indicate that the 

carbonyl oxygen of hypericin interacts with the tryptophan residue in the IIA sub domain of 

HSA. This interaction is suggested to occur via hydrogen bonding between the Ni-H of the 

tryptophan and the carbonyl oxygen of hypericin [57]. 

As indicated above, there are several important differences in the interactions of 

hypericin and hypocrellin A with HSA. It is reasonable to conclude from the 31-ns single-

exponential fluorescence anisotropy decay of the HSA/hypericin complex and the fact that 

the form of this decay is independent of the stoichiometry of the complex (Figure 3.6), that 

the majority of hypericin binds rigidly and specifically in the IIA subdomain of HSA. On the 

other hand, not only is there a rapidly decaying component of -150-250 ps in the anisotropy 

of the hypocrellin/HSA complex, but the form of the decay depends on the stoichiometry of 

the complex (Figure 3.6). The order parameters for the hypocrellin/HSA complex are < 0.5 
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(as opposed to 1 for the hypericin/HSA complex) and indicate, along with the other data, that 

the majority of hypocrellin that binds to HSA binds to the more fluid-like exterior. 

A comparison of the fluorescence properties of hypericin and hypocrellin in complex 

with HSA and in DMSO/water mixtures indicates that hypocrellin is more hydrophilic than 

hypericin, which is consistent with the above interpretation of the anisotropy data for 

hypocrellin binding largely to the HSA surface in a nonspecific manner. That there is no 

energy transfer from the HSA tryptophan to hypocrellin and that in the case of the 1:4 

hypocrellin/HSA complex the fluorescence quantum yield of hypocrellin actually decreases 

when the tryptophan is excited strongly suggests that hypocrellin is aggregated at the surface 

of HSA. 

In the 1:4 hypericin/HSA complex, it is very likely that some hypericin binds to the 

surface; but the fact that hypericin's lifetime in the complex is so much longer than that of 

hypocrellin's (Figures 3.7b and 3.8b) indicates that these surface-bound molecules are not 

aggregated. Also, hypericin's ability to execute excited-state intramolecular proton transfer 

in this complex (Figure 3.9c) indicates that these surface-bound molecules are not 

aggregated—assuming aggregation most likely occurs end-to-end, so that the hydroxyl and 

carbonyl groups of neighboring hypericin molecules are mutually blocked [61]. Note that 

there is no evidence for intramolecular excited state proton transfer for the hypocrellin/HSA 

complex in any stoichiometry. Study of the hypericin/HSA complex may also provide 

significant insight into the nature of the proton transfer reaction itself. If the specific binding 

interaction of hypericin to HSA is such as indicated in the Raman experiments (i.e., by 

coordinating one carbonyl group of hypericin and hence prohibiting it from accepting the 

neighboring hydroxyl proton), then the absence of intramolecular proton transfer in the 1:1 
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complex (Figures 3.9b. 3.10. 3.11) indicates that proton transfer cannot occur independently 

in the "top" or "bottom" of the molecule; and. consequently, that the proton transfer is a 

concerted event involving both ends of hypericin. It is also possible that the rigid binding of 

hypericin to HSA prohibits it from any intramolecular conformational change [74] that 

accompanies the proton transfer reaction and that this also is responsible for the absence of 

intramolecular proton transfer in the complex. 

Finally, an important problem raised by this study is understanding the nature of the 

nonradiative processes induced upon binding hypericin to proteins, DNA, or micelles. In all 

the model systems to which hypericin is bound, nonexponential fluorescence decay is 

induced (Table 3.1). This question has been raised by Song and coworkers [75-76] in the 

context of another system that is very similar to that of hypericin, namely the stentorin 

chromophore (Figure 3.1). Stentorin serves as the primary photosensor in the single cell 

ciliate, Stentor coeritleus. Proton transfer has been suggested as a possible primary 

photoprocess in triggering the light signal transduction chain in Stentor coeritleus. The 

stentorin chromophore is covalently linked to an -50 kDa apoprotein. Bound to the protein, 

in water, this chromophore exhibits a very short-lived nonexponential fluorescence decay 

that is dominated (-95%) by an 8-ps component. Song and coworkers have shown that the 

long-lived hypericin fluorescence can be efficiently quenched by electron acceptors such as 

benzoquinone [77,78] and they have proposed that excited-state electron transfer of the 

stentorin chromophore to disulfide bonds in the protein result in photooxidation of the 

stentorin chromophore (HO—ST—OH) to oxystentorin (O = ST = O) and the loss of two 

protons by the following mechanism, which is reversible [75,78] : 
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HO—ST—OH + hv —» HO—ST—OH* -» HO—ST—OH*" -> O = ST = O + 2H* 

Song and coworkers estimate the oxidation potential of excited-state hypericin to be 

-1.2 V [77] and use the oxidation potential of dithiodiethanol (0.95 V) for that of a disulfide 

bridge. (There is considerable uncertainty in these numbers. For example, the oxidation 

potentials of cystine disulfide and oxidized 3-mercaptoethanol are calculated to be 1.7 and 

1.5 V, respectively [79]). It is quite possible that such electron transfer processes are 

occurring in HSA, which has 18 disulfide bridges [80]. Excited-state electron transfer of 

hypericin bound to poly dG-dC is also feasible (the oxidation potentials of guanine and 

cytosine are 0.85 V and 1.2 V, respectively [81]. It is also possible that the long-lived (-5.5 

ns) excited state of hypericin is quenched by an excited-state intermolecular proton transfer 

process independent of any electron-transfer processes (for example, in myoglobin or 

micelles, where there are no disulfide bridges). Such excited-state proton transfer to an 

appropriate acceptor may explain our inability to observe a light-induced pH drop in micelles 

or bound to HSA (see Experimental Section). 

The nonradiative rate processes that are introduced upon binding hypericin (or 

hypocrellin A) to protein, DNA, or micelles give rise to nonexponential fluorescence decay 

in hypericin. In the context of what is known for the analogous stentorin chromophore, such 

nonradiative processes may involve excited-state electron transfer, excited-state proton 

transfer, or new processes introduced by the presence of surface-bound aggregates. Further 

work is required to understand the nature and the mechanisms of these pathways. To what 
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extent they arise from specific or nonspecific binding, interior or surface binding, and 

aggregation of the chromophore is an important question that we hope to address by studying 

a more detailed series of target molecules than has been done in the present work where the 

nature of the chromophore-macromolecule interaction is known or can be predicted. 
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CHAPTER IV: ENVIRONMENT OF TRYPTOPHAN 57 IN PORCINE 

FRUCTOSE-l,6-BISPHOSPHATASE STUDIED BY TIME-RESOLED 

FLUORESCENCE AND SITE-DIRECTED MUTAGENESIS 

A paper published in Photochemistry and Photobiology1 

Jin Wen2. Scott W. Nelson3, Richard B. Honzatko3. Herbert J. Fromm3. 

and Jacob W. Petrich2'4 

Abbreviations: FBPase, fructose-1,6-bisphosphatase: FI6P2, fructose 1,6-bisphosphate; F6P. 

fructose 6-phosphate: F26P?. fructose 2.6-bisphospate: Pi, orthophosphate; CD, circular 

dichroism: FWHM. full width at half maximum: KDP. potassium dihydrogen phosphate; 

AMP. adenosine monophosphate; NADP, nicotinamidde adenine dinucleotide phosphate; 

NADPH. reduced form of nicotinamide adenine dinucleotide phosphate; SDS-PAGE, sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis. 

Abstract 
The environment of Trp57, introduced by the mutation of a tyrosine in the dynamic 

loop of porcine liver fructose-1,6-bisphosphatase, was examined using time-resolved 

fluorescence and directed mutation. The Trp57 enzyme was studied previously by X-ray 

crystallography and steady-state fluorescence, the latter revealing an unexpected red shift in 

the wavelength of maximum fluorescence emission for the R-state conformer. The red shift 

1 Reprinted with permission of Photochemistry and Photobiology, 2001, 74(5), 679-685 
2 Department of Chemistry, Iowa State University, Ames, IA 50011-3111 USA 
3 Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 
Ames. IA 50011-3111 USA 
4 To whom correspondence should be addressed 
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was attributed to the negative charge of Asp127 in contact with the indole side-chain of Trp'7. 

Time-resolved fluorescence experiments here reveal an indole side-chain less solvent 

exposed and more rigid in the R-state, than in the T-state of the enzyme, consistent with X-

ray crystal structures. Replacement of Asp'27 with an asparagine causes a 6 nm blue shift in 

the wavelength of maximum fluorescence emission for the R-state conformer, with little 

effect on the emission maximum of the T-state enzyme. The data here support the direct 

correspondence between X-ray crystal structures of fructose-1.6-bisphosphatase and 

conformational states of the enzyme in solution, and provide a clear example of the influence 

of microenvironment on the fluorescence properties of tryptophan. 

Introduction 

Fructose-1,6-bisphosphatase (D-fructose-l,6-bisphosphate 1-phosphohydrolase. EC 

3.1.3.11; FBPase) catalyzes the hydrolysis of fructose 1,6-bisphosphate (FI6P2) to fructose 

6-phosphate (F6P) and inorganic phosphate (Pi) [1, 2]. In the absence of a mechanism of 

regulation. FBPase and fructose-6-phosphate-1-kinase would catalyze a futile cycle in the 

gluconeogenic/glycolytic pathway. FBPase activity, however, is subject to tight metabolic 

control, being inhibited synergistically by F26P% and AMP [3-5]. AMP binds to allosteric 

sites located 28 À from the nearest active site [6]. F26P% binds to the active sites as a 

substrate analog. FBPase requires divalent cations (Mg2\ Mn2\ or Zn2+), and rates of 

reaction vary sigmoidally with metal ion concentration (Hill coefficient of 2) [7-9]. 

FBPase is a homotetramer (subunit Mr of 37,000 [10]), which exists in at least two 

conformational states designated R and T [11, 12]. AMP, alone or in combination with 

F26P:, stabilizes the inactive T-state [13-15]. Substrates or products along with metal 
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cations shift the equilibrium in favor of the R-state [11, 16]. Directed mutations implicate 

loop 52—72 in the allosteric regulation of FBPase [17. 18]. Product complexes of FBPase in 

the presence of Mg2> and Zn2+ reveal an engaged loop, which makes several important 

contacts with the active site [16]. In contrast, product complexes with AMP reveal a 

disengaged loop, well removed from the active site [19]. A proposed mechanism of 

allosteric regulation of catalysis requires at least these two conformational states (engaged 

and disengaged) for loop 52—72 [16]. 

Because of its sensitivity to environment, tryptophan fluorescence can be an excellent 

probe of protein structure and dynamics [20-24]. As porcine FBPase has no tryptophan, a 

directed mutation can easily introduce a unique fluorophore. Previously reported are the 

crystal structures of the R- and T-states, initial rate kinetics, and steady-state fluorescence of 

the Tyr57—> Trp mutant [17]. Interestingly, the steady-state fluorescence revealed a red shift 

in the wavelength of maximum fluorescence emission for the R-state (350 nm) relative to the 

T-state (340 nm). The typical emission properties of tryptophan as a function of solvent 

polarity suggest a solvent-exposed environment for Trp57 in the R-state, and a more 

hydrophobic, less exposed environment for Trp57 in the T-state. In X-ray crystal structures, 

however, Trp57 of the R-state conformer is in a hydrophobic pocket, whereas Trp57 of the T-

state is solvent-exposed (Fig.4.1). In this article we consider whether the aforementioned red 

shift arises from an electrostatic perturbation, due to the proximity of Asp127 to the indole of 

Trp57 in the R-state. The electrostatic field produced by the negative charge of Asp127 may 

decrease the energy separation between the ground and excited states of the indole side-

chain, thus causing a shift of the fluorescence emission to a lower energy. Another potential 
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contribution to the red shift is a hydrogen bond between the side-chain of Asp127 and the 

imino hydrogen of the indole group. 

The work reported below employs time-resolved fluorescence to achieve greater 

detail in probing the environment of Trp37 and examine the effect of removing the negative 

charge by mutation of Asp'27 to asparagine. Solvent accessibility and rotational mobility of 

Trp37 determined in solution is consistent with that deduced from X-ray crystal structures for 

the R- and T-state conformations. In addition, the double mutant (Asn'27/Trp57) exhibits a 6 

nm blue-shift in the R-state conformation relative to the Xma.x of Trp37 enzyme. 

Materials and Methods 

Materials—F16P;, F26Pi, NADP+, AMP, ampicillin and IPTG were purchased from 

Sigma Chemical Co.(St. louis, MO). DNA modifying and restriction enzymes, T4 

polynucleotide kinase and ligase came from Promega (Madison, WI). Glucose-6-phophate 

dehydrogenase and phosphoglucose isomerase came from Roche (Indianapolis, IN). Other 

chemicals were of reagent grade or the equivalent. Escherichia coli strains BMH 71-18 

mutS and XLl-Blue came from Clontech (Palo Alto, CA) and Stragene (La Jolla, CA), 

respectively. FBPase-deficient E. coli strain DF 657 was from the Genetic Stock Center at 

Yale University. 

Mutagenesis — The method for generation of the single Trp57 mutation is previously 

described [I]. The Asp'27—» Asn mutation was introduced by changing specific bases in the 

Trp57 double stranded plasmid using the Quickchange™ site-directed mutagenesis method. 

The forward and reverse primers for the Asp127—> Asn mutation were 5'-

CCTCGATGGATCGTCGAACATCAACTGCCTTGTGTCCATTGG-AACC-3' and 
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Figure 4.1 Structure of the Trp57 Mutant in the R- and T-states. (Top) For clarity only a single subunit of each 
conformation of the FBPase tetramer is presented. In the orientation shown the subunits would be in the lower 
left-hand corner of the tetramer (C4). In the R-state, the loop 52-72 (thick Ca trace) is engaged over the active 
site and Trp57 is in proximity to Asp127. In the T-state conformation AMP displaces phosphate from the 
allosteric site, helix H2 is translated by 0.9Â, and loop 52-72 has little density and is in the disengaged form. 
(Bottom) Close up views of Trp57 in the R- and T-states. The orientations of the R- and T-state have been 
changed to better show the interactions between Tip57 and other side chains. 
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5'- GGTTCCAATGGACACAAGGCAGTTGATGTTCCIACGATCCAT-CGAGG-T (codon 

for Asn underlined in bold typeface). Random mutations as a result of the mutagenesis 

procedure were ruled out by sequencing the entire gene, after which the mutant plasmid was 

used in the transformation of E. colt DF 657 (DE3) cells. The Iowa State University 

sequencing facility provided DNA sequences, using the fluorescent dye-dideoxy terminator 

method. 

Expression and Purification — Expression and purification of the mutant FBPases 

were performed as previously described [18]. After cell breakage and centrifugation, the 

supernatant was loaded directly onto a Cibacron-Blue column and eluted with a NaCl 

gradient from 0.5—1 M. The active fractions were dialyzed against 20 mM Tris-HCl, pH8.3, 

loaded onto a DEAE-Sephadex column and eluted with a gradient 0—300 mM in NaCl. 

FBPase eluted at a salt concentration of 150 mM and its purity confirmed by SDS-PAGE 

[25]. Protein concentration was determined using the Bradford assay [26] with bovine serum 

albumin as a standard. 

Circular Dichroism (CD) Spectroscopy—Spectra were recorded from 200—260 nm 

in steps of 1.3 nm on a Jasco J710 spectrometer in a 1 mm cell at room temperature using a 

protein concentration of approximately 0.25 mg/mL. Each spectrum was blank-corrected 

using the software provided with the instrument. 

Kinetic Experiments — All assays employed the coupling of phosphoglucose 

isomerase and glucose-6-phosphate dehydrogenase [2]. Specific activity, kCiU and pH 7.5/9.5 

activity ratios were determined by directly monitoring the reduction of NADP+ to NADPH at 

340 nm. All other kinetic experiments monitored the fluorescence emission from NADPH at 

470 nm, using an excitation wavelength of 340 nm [1]. Initial rate data were analyzed using 
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programs written either in MINITAB [27] or by ENZFITTER [28]. To fit the AMP titration 

data the Hill equation was used: 

AS ("A5MAX ,'SQ ) * [AMP\n 
(4_1} 

S 0  K d + [ A M P } n  

where AS is the change in <TF>O/<R,> or S2 caused by the addition of AMP, S0 is the value of 

<TF>,/<TF> or S: in the absence of AMP, KJ is the dissociation constant for the enzyme-AMP 

complex, and n is the Hill coefficient. A Hill coefficient >1 indicates positive cooperativity 

between AMP binding sites. 

Steady-State and Time-Resolved Fluorescence—Steady-state fluorescence spectra 

were obtained on a SPEX Fluoromax with a 4 nm band-pass. Protein and ligand 

concentrations are in the figure legends, as are the equations for fitting data. 

Apparatus for Time-Correlated Single Photon Counting—A Coherent 701 rhodamine 6 G 

dye laser is pumped with about 1 W of 532 nm radiation from an Antares 76-s CW mode-

locked Nd:YAG laser. The 701 dye laser is cavity-dumped at 3.8 MHz. The pulses have an 

autocorrelation of about 10 ps FWHM. Excitation of tryptophan at 295 nm is achieved by 

focusing the dye laser pulses with a 5 cm lens onto a crystal of KDP. Fluorescence is 

collected at right angles through a polarizer mounted at 54.7 to the excitation polarization 

and then passed through an ISA H-10 monochromator with a 16 nm band-pass or through 

cutoff filters. A Hamamatsu R3890u microchannel plate, amplified by a Minicircuits ZHL-

1042J, and a FFD 100 EG&G photodiode provide the start and stop signals, respectively. 

Constant-fraction discrimination of these signals is performed by a Tennelec TC 455, and 

time-to-amplitude conversion, by an ORTEC 457. Data are stored in a Norland 5500 
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multichannel analyzer before transfer to and analysis with a PC. The instrument function of 

this system has a FWHM of 100-150 ps. The polarized fluorescence traces used to obtain 

fluorescence anisotropy decay parameters are collected to a maximum of 16,000 counts in 

the peak channel. 

Global fitting—Time-resolved fluorescence data, acquired at various wavelengths, 

are subjected to a global fitting procedure found in Spectra Solve™. The global parameters 

in this case are time constants and local parameters are amplitudes (pre-exponential factors). 

The time constants are specified and each curve is fit iterative!y varying only the local 

parameters. A local %2 is calculated for each local fit. After all curves are fit (typically 6 to 

11), a global %' is calculated as shown below. The global parameters are varied and the 

whole process is repeated to calculate a new global This process is repeated until a 

minimum is reached for which is defined as: 

amplitudes and time constants) vary; and n is the number of curves. The quality of the fit is 

determined by visual inspection and residuals. 

Results 

Expression, Purification and Circular Dichroism Spectroscopy 

Wild-type and mutant proteins behaved identically throughout the purification 

procedure and were at least 95% pure by SDS-PAGE. The CD spectra of wild-type, Trp57, 

X~ = (4-2) 
n 

where is obtained for each curve letting all parameters local and global (that is. 
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and Trp37/Asn12' FBPases are identical from 200 to 260 nm, indicating no major changes in 

secondary structure of protein fold due to the mutations. 

Kinetic Properties of the TrpS7/Asn127 mutant FBPase 

The ratio of catalytic rates at pH 7.5 to 9.5 indicates an intact (non-proteolyzed) enzyme. 

The addition of the Asp127—>Asn mutation to the Trp57 mutant does not greatly influence 

kinetic parameters (Table 4.1). The Asnl27/Trp57 enzyme exhibits only a 1.2-fold reduction 

in Mg^-affinity and a reduction in cooperativity (1.9 to 1.7). Changes in kinetic parameters 

are not significant. The double mutant has a reduced affinity towards AMP relative to the 

single mutant (2-fold), but the kinetic mechanism of AMP and F26Pi inhibition are 

unchanged, as established by inhibition assays. AMP is a non-linear competitive inhibitor 

with respect to Mg2+, and F26P] is a linear competitive inhibitor with respect to FI6P1. 

Fluorescence Properties of the Trp57 and Trps?/Asn127 Enzymes 

The steady-state emission spectra for the R- and T-states of Trp57 and Trp57/Asn127 

are shown in Fig.4.2. The emission maxima for the Trp57 single mutant in the R- and T-states 

are 352 and 340 nm, repectively. The emission maxima for the Trp57/Asn127 double mutant 

in the R- and T-states are 346 and 339 nm, respectively. 

The average lifetime for the T-state conformation is shorter than that of the R-state. 

The change in lifetime as a function of AMP concentration (Fig.4.3) indicates a dissociation 

constant for AMP of 16.9 ^M with a Hill coefficient of 2.0. These values are comparable to 

those determined from steady-state fluorescence (16 ^iM and 2.1, respectively) and initial 
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Table 4.1: Kinetic parameters for Wild-type, Y57W, and Y57W/D127N FBPases. 

Activity ratio K^FÏôPÏ Ka-Mg"+ Hill-coefficient K^F26P, I5l,-AMPa 

pH 7.5/9.5 sec1 |aM mM2 for Mg2+ f*M |*M 

Wild-Type 33 22.0±0.1 1.75±0.08 0.67±0.04 l.9±0.l 0.264±0.005 1.61 ±0.05 

Tip57 3.3 24.0±0.1 3.39±0.09 0.53±0.06 l.9±0.l 0.84±0.05 8.5±0.4 

Trp57/Asnl27 3.2 22.5±0.4 2.8±0.2 0.78±0.04 1.7±0.l 0.43±0.03 18±2 

"Hill coefficient of AMP inhibition is 2.0, as determined from a plot of Mg2+ v.v. AMP al a concentration of 20 ^M FI6P1. 



www.manaraa.com

97 

"7: 
S 
V 

o 
u 
s 
<u 

t o 
3 

C/3 
C 
u 

<o 
o 
g 
N 

! 
3 

/ 
A 

/ / \ \ 

" // 
X 

-

X 
- X 
-/ X ^ 

- 1 1 1 1 J 1 1 _ 1 

320 340 360 380 

wavelength (nm) 

400 

320 340 360 380 400 420 

wavelength (nm) 

Figure 4.2 (A) Fluorescence spectra of the Trp57 mutant. Enzyme under R-state (— ) 
conditions of ligation (5 M F6P and 5 mM KPi) in the presence of 50 nM Zn2+ and 
enzyme under T-state ( — ) conditions of ligation (5mM F6P, 5 mM KPi, and 0.4 
mM AMP ) in the presence of 50 jiM Zn2*. 

(B) Fluorescence spectra of Trp57Asn127 double mutant. Enzyme under R-
state (— ) conditions of ligation (5 M F6P and 5 mM KPj) in the presence of 50 |xM 
Zn2* and enzyme under T-state ( — ) conditions of ligation (5mM F6P, 5 mM KPj, 

and 0.4 mM AMP ) in the presence of 50 |iM Zn2*. 
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Figure 4.3 Titration curve obtained by plotting <Tf>o/<Tf> vs. [AMP]. For each point, the 
lifetime decay was fit to a double exponential: F(t) = a,exp(-t/T,) + aaexpC-t/Ta). <Tf> is the 
average lifetime (<TF> = a, x + a2 x T2). <TF>o is the average lifetime of the R-state (i.e., 
without AMP). The fitted line was calculated using the Hill equation. 
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Figure 4.4 Stem-Volmer plot for the acrylamide quenching of Trp57 mutant in the 
presence of 50 nM Zn2+. The Stem-Volmer plot obtained by plotting the ratio of the 
average lifetime in the absence of quencher over the average lifetime with quencher vs. 
the concentration of quencher. The solid line is a fit to the equation: 

< r° > = 1+ KSV[Q], where Ksv r = 6.2 M"1 for the R-state (o), and Ksv t = 8.4 M"1 for the 
<r,  > 

T-state (V ). 

Table 4.2: X^u, Quenching Constants, and Order Parameter for the R- and T-state of Y57W. 

Xcmmax (nm) Ksv (M'1) (x lO^M-'s'1) S' 

R-state1 352 6.2 ±0.5 1.5 ±0.1 0.49 ± 0.02 

T-stateb 340 

ar • .  r-^n f m m _ n 

8.4 ±1.0 2.4 ± 0.3 0.43 ±0.02 

aLigand concentrations are: F6P, 5 mM; Zn2+, 50 nM; KPj, 5 mM. 

^igand concentrations are identical to those for the R-state with the addition of 200 pM AMP. 

2.0 
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Table 4.3: Summary of global fitting parameters for Trp57 mutant under R- and T- state 
conditions. 

Xcm (nm) R-state T-state 

a. az a. a? 
334 0.45 0.55 0.48 0.52 

340 0.39 0.61 0.44 0.56 

350 0.30 0.70 0.38 0.62 

360 0.23 0.77 0.34 0.66 

370 0.18 0.82 0.28 0.72 

380 0.15 0.85 0.25 0.75 

The functional form used to fit the decays is: F(t) = a, exp(-t/T,) + a, exp(-t/TI). T| and 
T: were fixed during fitting. R-state: T,=1.5ns and T2=6.8ns; T-state: T,=I.2ns and 
T2=5.8ns. 

rate kinetics (22 pM and 2.0, respectively). Evidently, the decrease in fluorescence lifetime 

is directly related to the conversion of the R-state to the T-state conformer. 

Acrylamide quenching is widely used as a measure of solvent accessibility [18]. 

Slopes of Stem-Volmer plots for the acrylamide quenching of the R- and T-states of Trp37 

FBPase (Fig.4.4) give the Stem-Volmer constants (Ksv). The ratio of slope to average 

lifetime in the absence of quencher gives the quenching constant (kq). Quenching constants 

for the R- and T-states are in Table 4.2. 

Fluorescence decays for the Trp57 and Trp57/Asn127 FBPases under R- and T-state 

conditions are globally fit to a sum of exponentials (Table 4.3, Table 4.4), where the time 

constants are fixed and only the amplitudes are permitted to vary (as described above). In all 

cases the weights of the components change across the emission spectrum, indicating the 

presence of two distinct environments for each of two lifetimes. The two lifetimes may arise 

from an equilibrium between the loop-engaged and loop-disengaged states. AMP shifts the 
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Table 4.4: Summary of global fitting parameters for Trp37/Asn'"7 double mutant under R-
and T- state conditions. 

Xem (nm) R-state T-state 

at a2 ai a2 

330 0.60 0.40 0.57 0.43 

340 0.57 0.43 0.55 0.45 

350 0.54 0.46 0.52 0.48 

360 0.51 0.49 0.49 0.51 

370 0.48 0.52 0.46 0.54 

380 0.46 0.54 0.43 0.57 

The functional form used to fit the decays is: F(t) = a, exp(-t/T|) + a? exp(-t/T2). Ti and 
T: were fixed during fitting. R-state: T|=1.6ns and T2=6.0ns; T-state: T|=1.4ns and 
T2=5.4ns. 

equilibrium toward the T-state, but perhaps not all enzyme subunits have disengaged loop. 

Likewise, the prescence of F6P, KPj, and ZnCI2 favors the R-state, but some portion of the 

enzyme ensemble may have disengaged loops. That portion of the Trp57 enzyme with the 

disengaged loop may be responsible for the short lifetime, whereas that portion with the 

engaged loop might be responsible for the long lifetime. This notion of an equilibrium 

between the two states is qualitatively consistent with the relative contributions of each 

lifetime to the R- and T-states. 

The mobility of a fluorophore is related to the decay of the fluorescence anisotropy, 

as well as the order parameter, 52, where 52 = r(0+)/reff(0). The fluorescence anisotropy decay 

is fit to a double exponential (r(t) = ri(0)exp(-t/%,) + ri(0)exp(-t/T2)), which allows for rapid 

motion of tryptophan with respect to the protein, as well as the overall tumbling of the 

protein itself. r(0+) comes from a fit of the slow time component of anisotropy decay, which 

corresponds to overall protein reorientation, and refK0) = r,(0) + r2(0) [20, 21,29]. 
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Consequently. S' varies from 0 toi, with a value of I indicating totally restricted motion of 

the chromophore. The dependence of mobility (S2) on AMP concentration is in Fig.4.5. The 

difference between the R-state (0 |iM AMP) and T-state (200 |iM AMP) is small, but 

reproducible. Evidently, the side chain of Trp37 is slightly more mobile in the T-state than 

the R-state. Additionally, the non-linear regression curve of Fig.4.5 results from a Hill 

coefficient for AMP constrained to a value of 2.0, with an optimized Kj (the dissociation 

0.49 » 

0.48 

0.47 

0.45 

0.44 

0.43 
200 150 0 50 100 

AMP, gM 

Figure 4.5 Plot of the order parameter (S2) vs. concentration of AMP. The order parameter 
was obtained from fitting the anisotropy decay to double exponential ( r(t) = riexp(-t/Tri) + 
r:exp(-t/Trz), Tri and Xa are the rotation time). The fitted line was calculated using the Hill 
equation and the same fitting parameter obtained from the titration curve in Figure 4.4. That 
the same parameters can describe these two sets of data, obtained from different 
measurements, is evidence that we are probing the mobility of the protein in both 
experiments. 
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constant for AMP) of 25 gM, nearly identical to other independent measurements of that 

dissociation constant. 

Discussion 

Quenching constants from Stem-Volmer plots reveal that Trp37 in the R-state is more 

protected from solvent than in the T-state, consistent with X-ray crystallographic structures. 

On the basis of solvent accessibility calculations performed on crystal structures, Trp37 has 

8.1 and 6.4 Â2 of accessible surface area in the T- and R-states, respectively. A total of 22 

proteins compiled by Lakowicz [24] reveal a strong positive correlation between and 

/rq. Hence, the inverse relationship between kq and z^x observed here is unexpected. In 

general, quenching by acrylamide increases with the wavelength of maximum fluorescence 

emission. The kq value for the T-state conformer of Trp57 FBPase is within the range of 

quenching constants for other single-tryptophan proteins with emission maxima of 340 nm. 

In contrast, the kq value of R-state is anomalous in relation to other proteins with emission 

maxima of 352 nm. Using the empirical trend between kq and , the predicted &q value 

for a single-tryptophan protein with an emission maximum of 352 nm is approximately 3.6 x 

109 M"'s"\ almost 250% higher than that determined here. 

Anisotropy decay is sensitive to the mobility of the side chain of Trp57. Thermal 

parameters of Trp57 in R- and T-state crystal structures infer more freedom of movement of 

Trp57 in the T-state than in the R-state. In concurrence with the crystal structures, the order 

parameter, S2 (a measure of rotational mobility of a fluorophore), is less in the T-state than in 

the R-state, indicating a slightly less mobile fluorophore in the R-state (Fig.4.5). 
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The apparent agreement between the fluorescence and crystallographic analyses, 

however, does not reveal the cause of the anomalous red shift in the R-state emission 

spectrum. As noted above, this anomalous behavior may stem from the perturbation of 

Trp57, by the side chain of Asp127 (Fig.4.1). A negative charge correctly placed with respect 

to Trp57 will decrease the energy of separation between ground and excited states and could 

be responsible for a red-shift in the wavelength of maximum fluorescence emission [30]. As 

a test of this hypothesis. Asp'27 was replaced by asparagine. A sequence alignment, using 63 

FBPases in Genbank, revealed 93% with aspartate at position 127, and only glutamate or 

asparagine as alternatives. In addition, the mutation of Asp'27 to serine significantly alters 

the kinetics and conformation of FBPase (R. Zhang, Choe, J. Y., R. B. Honzatko, and H. J. 

Fromm, unpublished results). Hence, the mutation of Asp'27 to asparagine is the best 

candidate (and perhaps the only candidate) to remove the electrostatic charge at position 127 

and yet retain the functional properties of FBPase. The circular dichroism spectrum of 

Trp37/Asn'27 FBPase is identical to that of wild-type and Trp57 FBPases, indicating the 

absence of large changes in secondary structure. Kinetics parameters for enzyme turnover 

(£CatX Mg2> affinity and cooperativity, FI6P2 affinity, and F26P, inhibition are the same for 

Trp57 and Trp57/Asn127 FBPases. The 2-fold increase in ATj-AMP relative to that of Trp57 

FBPase may arise from a more stabile loop-engaged, R-state conformation, a conformation 

that putatively cannot bind AMP. Crystal structures reveal the side chain of Trp57 in non-

bonded contact with the side chain of position 127 in the loop-engaged conformation. The 

mutation of position 127 to asparagine then, should reduce the thermodynamic penalty 

associated with the partially buried electrostatic charge of Asp127. 



www.manaraa.com

105 

The steady-state fluorescence of the Trp37/Asn127 enzyme in the R-state has a 

wavelength of maximum fluorescence emission of 346 nm, which blue shifted by 6 nm 

relative to the emission maximum of the Trp37 enzyme. Evidently, the side chain of Asp1'7 is 

responsible for the anomalous red shift in the wavelength of maximum fluorescence 

emission. As the mutation to asparagine does not shift the emission spectrum to wavelengths 

shorter than that of the T-state, as would be expected if the charge were wholly responsible 

for the phenomenon, it is likely that hydrogen bonding also contributes to the anomalous red-

shift. 

The steady-state fluorescence spectrum of the T-state is insensitive to the mutation of 

Asp127 to asparagine. as Trp57 is remote from position 127 in the T-state conformation of the 

enzyme. The small blue shift of the T-state is probably due to some portion of the enzyme 

remaining in the R-state even in the presence of 200 pM AMP. This explanation is also 

consistent with the observation of two distinct lifetimes. Tryptophans in single 

conformational states, however, also exhibit heterogeneous fluorescence decay [31]. Hence, 

by itself, hetereogeneity in fluorescence decay is not absolute proof of multiple rotamer 

populations or conformational states of tryptophan. 

Conclusion 

Time-resolved fluorescence data presented here are consistent with predictions made 

on the basis of X-ray crystal structures of Trp57 FBPase. The indole side chain of Trp57 in the 

R-state is less mobile and more protected from solvent than in the T-state. In addition, 

changes in the fluorescence emission spectrum due to the mutation of Asp127 to asparagine 
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support our previous suggestion that the anomalous, red-shifted emission spectrum of the It-

state Trp37 enzyme is due in part to the electrostatic perturbation of the Asp127. 
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CHAPTER V: MULTIDIMENSIONAL REACTION COORDINATE FOR 

THE EXCITED-STATE H-ATOM TRANSFER IN PERYLENE 

QUINONES: IMPORTANCE OF THE 7-MEMBERED RING IN 

HYPOCRELLINS A AND B 

A paper published in Photochemistry and Photobiology1 

Anindya Dutta2. Alexandre V. Smirnov2. Jin Wen-, and Jacob W. Petrich2,3 

Abbreviations: DcOH. decanol: DMSO. dimethyl sulfoxide; DT. double tautomer. EtOD. 

deuterated ethanol: EtOH. ethanol: MeOD. deuterated methanol: MeOH. methanol: NT. 

normal tautomer: OcOH. octanol. 

Abstract 

The excited-state intramolecular H-atom transfer reactions of hypocrellins B and A 

are compared by using time-resolved absorption and fluorescence upconversion techniques. 

The hypocrellin B photophysics are well described by a simple model involving one ground-

state species and excited-state forward and reverse H-atom transfer with a nonfluorescent 

excited state. We suggest that excited-state conformational changes are coupled to the H-

atom transfer in hypocrellin B just as gauchelanti changes are coupled to the H-atom transfer 

in hypocrellin A. 

1 Reprinted with permission of Photochemistry and Photobiology, 2000. 71(2), 

166-172 

2 Department of Chemistry, Iowa State University, Ames, IA 50011-3111 USA 

3 To whom correspondence should be addressed 
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Introduction 

The perylene quinones. hypocrellin. hypericin (Fig.5.1) and their analogs are of 

interest because of their light-induced biological properties [1-5]. We have argued that they 

also present a fascinating system with which to study excited-state intramolecular H-atom 

transfer [6-17] and intermolecular proton transfer [18-20], In previous articles, we have made 

detailed comparisons of the photophysics of hypocrellin and hypericin in an attempt to 

reconcile and to unify their superficially different behavior [16. 17. 21]. In this article, we 

compare the excited-state H-atom transfer of hypocrellins A and B. 

The most significant structural difference of the B form with respect to that of the A 

form is its double bond in the 7-membered ring. Three significantly populated species are 

observed for hypocrellin A [17]: two normal, i.e. untautomerized, species differing in the 

orientation of the 7-membered ring (i.e. a gauche or anti conformation about the C14-C13 

bond or the C 14-C 16 bond) and a double tautomer in the gauche conformation (Figure 5.2). 

We have determined in our previous work that conformational changes are coupled to both 

ground- and excited-state tautomerization in hypocrellin A [17]. Owing to the double bond in 

its 7-membered ring, hypocrellin B has higher structureal rigidity than hypocrellin A. 

Consequently, only one tautomer/conformer of hypocrellin B is observed by NMR to be 

significantly populated in the ground state [17]. 

Here we present a preliminary comparison of the photophysics of hypocrellin A and 

B with the aim of understanding how the 7-membered ring and its conformation influences 

the excited state H-atom transfer. The gauche and the anti conformers of the 7-membered 

ring in hypocrellin A are defined in terms of the relative positions of the methyl and the 

acetyl groups in the Newman projections (Figure 5.2). Because hypocrellin B has lost this 
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Figure 5.1 Structures of hypericin NT (a) and DT (b) forms; hypocrellin A NT (c) and DT 
(d) forms and the normal form of hypocrellin B (e). 
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Figure 5.2 Conformational forms of the hypocrellin A NT and DT. The anti/gauche 
nomenclature is based on the relative position of the methyl and acetyl moieties as depicted 
by the C(14) -C(13) and the C( 14) -C(16) Newman projection. The NMR measurements of 
hypocrellin A indicate that in the ground state there is 60% gauche DT (gDT), 30% anti NT 
(aNT) and 10% gauche NT (5NT). In the ground state, these species are related sequentially, 
by the following equilibria: gDT *->aNT <->gNT, as indicated in the figure. Based on our 
model [21]. which requires that only the DT is significantly fluorescent, we conclude that in 
the excited state, the relation among the species is different: g NT* —»#DT* <—aNT*. 
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-OH group by elimination of water, thus forming the d boule bond it is no longer possible to 

speak of gauche and ami conformera. The 7-membered ring of hypocrellin B is. however, 

buckled. Insofar as this double bond is conjugated to the % system of the aromatic skeleton, 

one might expect that in the excited state the 7-membered ring is able to undergo a confor­

mational change about the double bond. Thus, we suggest that excited-state conformational 

changes are coupled to the H-atom transfer in hypocrellin B just as gauche/anti changes are 

coupled to the H-atom transfer in hypocrellin A [16. 17]. 

Materials and Methods 

Hypocrellin A and B were obtained from Molecular Probes and were used as 

received. Anhydrous HPLC-grade solvents (Aldrich) were used as received, except for 

deuterated ethanol (EtOD) and deuterated methanol (MeOD) that were distilled with CaH, 

and ethanol (EtOH) that was distilled with Mg to ensure that no water was present. Steady-

state absorbance spectra were obtained on a Perkin Elmer Lambda 18 double-beam UV-

visible spectrophotometer with 1 nm resolution. Steady-state fluorescence spectra were 

obtained on a Spex Fluoromax with a 4 nm bandpass and corrected for lamp spectral 

intensity and detector response. Transient absorption [12] and fluorescence upconversion 

measurements were obtained with the apparatus described in detail elsewhere [15, 16]. 

Fluorescence upconversion traces were fit with Spectra-Solve for Windows 95/98 

data collection and processing software (Ames Photonics. Inc.) employing nonlinear least-

squares iterative deconvolution subroutine and assuming a Poisson noise model. Two 

contributions are generally considered when fitting the data: a short rising component and a 
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long-lived decaying component (assigned to a time constant of infinity for experiments on 

time scales up to 50 ps). The data are fit to the following function: 

Fft) = a, [l-exp(-t/Tt)] + a, exp(-t/Tj 

= - a, expC-t/T,) + (at+ aj exp(-t/°°) (5-1) 

As a matter of convenience the fitting results are reported in a normalized form such that (a, 

+ a:) is equal to unity. A rapid rising component of fluorescence is observed for both 

hypericin and hypocrellin A. The time constant for this component ranges from 4.5 to 10 ps. 

For simplicity, we refer to it throughout this article as the •—10 ps component. 

The transient absorption data were also fit by the same program. For hypocrellin A. 

the data are tit to the following function: 

AA(t) = a,[l- exp(-t/T|)] + a2exp(-t/T2) + a3exp(-t/°°) (5-2) 

For hypocrellin B, however, two exponential components are sufficient to describe the data 

and the following form is used: 

AA(t) = ai[ 1- exp(-t/Ti)] + a2exp(-t/°°) (5-3) 

In both cases, a, is the amplitude of the rising component; and the infinite time constant 

describes a process that does not decay on the experimental time scales (up to 500 ps full 

scale) used in this study. 

Results 

Steady-state absorption and emission spectra of hypocrellins A and B in dimethyl 

sulfoxide (DMSO) are presented in Fig. 5.3. The most significant difference between the two 

hypocrellins is the smaller relative intensity of the reddest absorption maxima with respect to 

the absorption maximum ( —470 nm) in hypocrellin B. 
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Figure 5.3 Comparison of the absorbance (solid lines) and fluorescence 
(dashed lines) spectra of hypocrellin A (a) and hypocrellin B (b) in DMSO 
normalized to the reddest absorption maximum. The emission spectra are 
independent of the excitation wavelength 
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Figure 5.4 Transient absorption traces of hypocrellin B in EtOH and EtOD at probe 
wavelengths of (a) 610 nm. (b) 595 nm, (c) 570 nm and (d) 560 nm. The global fits to the 
data are presented in Table 5.1 

Transient absorption measurements were performed in C2H5OH and C2H5OD at 

several probe wavelengths in order to observe the magnitude of the deuterium isotope effect 

on the excited-state H-atom transfer reaction in hypocrellin B (Fig. 5.4 and Table 5.1). Four 

sets of data were simultaneously analyzed by means of a global fitting procedure described in 

detail elsewhere [22]. Surprisingly, an apparent inverse isotope effect is observed; i.e. kn/ko 

= 0.75. Although there is some precedent for inverse isotope effects in ground-state reactions 

[23], to our knowledge one has never been observed in a subnanosecond excited-state 

reaction. We propose that our result is a consequence of our inability to interrogate a 

sufficiently broad spectral range. The signal-to-noise ratio at bluer or redder probe wave­

lengths than those presented in Fig. 5.4 was unacceptable. Had the kinetic traces in Fig. 5.4 

exhibited a more marked difference over the spectral range investigated, we believe that 
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Table 5.1 Global fitting parameters for transient absorption traces of hypocrellin B in EtOH 

and EtOD* 

Solvent ^prohe (nm) ai di 

EtOH 610 0.35 0.11 

595 0.28 0.51 

570 0.02 0.33 

560 0.06 0.44 

EtOD 610 0.35 0.25 

595 0.27 0.69 

570 0.05 0.28 

560 0.04 0.24 

*The data were fit to the functional form: AA(t)=ai[l-exp(-t/Ti)]+a2exp(-t/T2). where 
TI=84 ps. T2= <» for EtOH: and T,=63 ps. t2=°° for EtOD 

an isotope effect greater than unity would have been obtained from the analysis. As an 

example we cite the case of hypocrellin A in CH3OH and CH3OD (Fig.5.5 and Table 5.2) 

[22]. Global analysis of the data at four probe wavelengths yields a normal isotope effect: 

kn/ko = 1.4. On the other hand, examination of these data at only one probe wavelength gives 

aberrant results. For example, analysis of the hypocrellin A data at only Xprobe = 570 nm 

yields a perfectly acceptable fit (Fig. 5.6) but gives kn/ko =0.71. 

The data presented in Figs. 5.4-5.6 and Tables 5.1 and 5.2 demonstrate very vividly 

the potential complications in analyzing kinetic data (especially transient absorbance data), 

the importance of employing global analysis procedures whenever possible and the necessity 

of employing complementary techniques, for example, fluorescence measurements that only 

detect emission from excited-state singlets [15, 16]. 

Transient absorption data were obtained in a range of solvents of different type and 

viscosity (Figs.5.7 and 5.8). Figure 5.8 indicates that the viscosity dependence of the H-atom 
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Figure 5.5 Transient absorption traces of hypocrellin A in methanol (MeOH) and MeOD 
probe wavelengths of (a) 595 nm. (b) 570 nm, (c) 560 nm and (d) 550 nm. The global fits to 
the data are presented in Table 5.2 

Table 5.2 Global fitting parameters for transient absorption traces of hypocrellin A in 
MeOH and MeOD 

Solvent Xprobe (nm) a, a2 a3 
MeOH 595 0.24 -0.19 0.07 

570 0.13 0.16 0.12 
560 0.11 0.16 0.07 
550 0.11 0.19 0.10 

MeOD 595 0.21 0.20 0.04 
570 0.14 0.01 0.13 
560 0.10 0.15 0.02 
550 0.08 0.03 0.09 

* The data were fit to the functional form: AA(t)=ai[l-exp(-t/Ti)]+a2exp(-t/t2)+a3exp(-t/T3), 

where TI=68 ps, t2=l290 ps and T3=°° for MeOH; and T,=98 ps, T%=1250 ps and T3=°° for 
MeOD. 

transfer in hypocrellin B is very similar to that for hypocrellin A. The results presented are 

based on a global fit of the kinetics obtained at 595 and 610 nm for hypocrellin B and at 550, 

560. 570 and 600 nm for hypocrellin A. 
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Figure 5.6 Transient absorption traces of hypocrellin A in (a) MeOH and (b) 
MeOD at 570 nm, fit nonglobally. For MeOH: 0.40[1 — exp(—1/74 ps)] + 
0.09exp(—t/1480 ps)+ 0.001 exp(—t/00) and for MeOD: 0.23[1 —exp(—1/53 
ps)] + 0.11 exp(—1/1980 ps) + 0.06 exp(—t/00). 
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Figure 5.7 Transient absorption traces of hypocrellin B in (a) EtOH and (b) 
decanol (DcOH). Xcx = 588 nm, Xcm = 595 nm. The fits to the data are: (a) AA(t) 
= 0.59[l —exp(—1/80 ps)] +0.99exp(—t/00) and (b) AA(t) = 0.52[1 —exp(— 
t/120 ps)] + 0.64exp(—t/°o). In the figure, the traces are normalized to have a 
value of 1.0 at their maximum. 
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Figure 5.8 Intramolecular H-atom transfer rate of millimolar hypocrellin B and hypocrellin 
A in various solvents of different viscosity at 22°C. The data are fit to a phenomenological 
expression k = (C/r|a)exp(—EQ/RT) where C = 2.17 x 1012 s"1, a = 0.33 and Eo = 2.92 kcal 
mol"1 for hypocrellin B and 1.9 x 1012 s'1,0.42 and 3.0 kcal mol"1 for hypocrellin A, 
respectively. An iterative nonlinear least-squares fit is used to obtain the parameters in both 
the cases. The solvents used in this study are MeOH. EtOH, propanol, pentanol. octanol 
(OcOH). nonanol, DcOH, ethylene gycol. DMSO, formamide, dimethylformamide, 
acetonitrile, butyronitrile, 2,2,2-trifluoroethanol and cyclohexanone. Viscosity data are 
obtained from the text by Viswanath and Natarajan [24]. The data points represent an 
average of from two to four measurements. The error bars represent an estimated error of 
10%. 
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The most surprising result we have obtained is that for hypocrellin B there is no 

obvious, significant <100 ps decay or rise in the fluorescence upconversion data (on time 

scales ranging from 50 ps to 1 ns). whereas for hypocrellin A there is a distinct -10 ps rising 

component (Fig.5.9). This result is satisfactorily explained in terms of the kinetic model 

presented below. 

Discussion 

Our argument for intramolecular excited-state H-atom transfer in hypericin is as 

follows. The deshydroxy analog of hypericin, mesonaphthobianthrone. is nonfluorescent 

except in strong acids [7. 8. 11] (e.g. sulfuric acid) where it produces a fluorescence spectrum 

that has nearly the same shape as that of hypericin in DMSO. These results demonstrate the 

importance of a protonated carbonyl group for producing hypericin-like fluorescence. The 

hypericin emission spectrum grows on a 6-12 ps time scale in all solvents except in sulfuric 

acid where it is instantaneous. Based on the results for mesonaphthobianthrone, the rise time 

for the appearance of the hypericin emission is taken as evidence for an excited-state H-atom 

transfer [7]. It is an assumption of our developing model for the excited-state photophysics of 

these perylene quinones that only the tautomer, not the normal species is significantly 

fluorescent. 

This assumption has proved to be quite useful in analyzing the complicated 

photophysics of these molecules [16, 21] although it is, however, very likely too rigid [21]. A 

question that arises is what we mean by tautomer. There is no particular problem when 

comparing the two forms of hypericin illustrated in Fig. 5.1a,b. For hypericin, the double 
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Figure 5.9. Fluorescence upconversion traces of hypocrellin A in OcOH (a) and hypocrellin 
B in OcOH (b) and acetone (c) collected at blue (591 nm) and red (653 nm) emission 
wavelengths. A fit of the hypocrellin A rising emission yields F(t) = — 0.10exp(—1/4.1 ps) + 
l.00exp(—t/°o). Dashed lines are included to help evaluate trace flatness. The inset of panel b 
shows the hypocrellin fluorescence decay on a nanosecond timescale, which is fit to F(t) = 
1.0exp(—1/814 ps). 
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DT-

Figure 5.10. Schematic for the hypocrellin B excited-state kinetics. The only species 
populated in the ground state, as determined by NMR measurements [17]. is the DT. The 
NT* is the normal excited state of the normal species: kback is the rate constant of 
tautomerization from DT* to NT*: and km is the rate constant to reform DT* from NT*. The 
NT* is assumed to be nonfluorescent 

tautomer is the species that has both carbonyl groups on the same side of the molecule, i.e. 

the 1.6- or 8.13-dioxo species. (There is a possible double tautomer that has the two carbonyl 

groups on either side of the molecule, the 1,8-dioxo form, but this species has not been 

determined to present a minimum on the ground-state potential energy surface [25]). On the 

other hand, the structural differences between what we refer to as the normal and the 

tautomer species are much more subtle when we compare these forms of hypocrellin 

(Fig.5.1c.d). 

Based on the NMR results for hypocrellin B, only one species exists in the ground 

state [17]. It is assigned, by the fundamental assumption enumerated above, to the double 

tautomer. DT (whose structure is, in turn, assigned based on analogy to that proposed for 

hypocrellin A [17]) because fluorescence is instantaneous, with no apparent rise time, in 

hypocrellin B (Fig. 5.9). The rise time in the transient absorption data for hypocrellin B is 

attributed to the formation of the normal tautomer, NT*, from DT*. 
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A model of textbook simplicity can be constructed to rationalize qualitatively the 

photophysics of hypocrellin B. In this model (Fig.5.10), DT* can tautomerize to NT* with 

rate constant, kback- Again, by the fundamental assumption, NT* is nonfluorescent, but it can 

undergo H-atom transfer to reform DT* with rate constant knr- The concentrations of DT* 

and NT* can be determined easily analytically or can be simply obtained from Chapter 7 of 

Birks' text [26]: 

[DT*]0 Vx_-X,t , zvr ^ À. it | [DT*](t) = a»- X)e 1 + (X -X i )e™ (5-4) 

[/V7*](r ) = 
(^2 -%i) 

(5-5) 

Where 

^1.2 - T X + Y + {(r-x) 2  
+ 4 hack kHT }"2 

X ^back • ^ ^ HT 

(5-6) 

(5-7) 
T F . D *  T F . N *  

TF.D- and TF.N* are the fluorescence lifetimes of the DT and the normal form in the absence of 

H-atom transfer. Figure 5.11 presents simulated upconversion and transient absorption traces. 

The TF.D* was fixed at 1 ns, which is the fluorescence lifetime of hypocrellin B, as measured 

by the upconversion experiment (Fig. 5.9b, inset). The TF.N* was set to be infinitely large, 

because the normal excited state is assumed to be nonfluorescent. The kyy was fixed at 0.02 

x 1012 s'1 (the inverse of the time constant for H-atom transfer in methanol, 50 ps [Fig. 5.7]). 

The only adjustable parameter in the simulation is kback, for which the optimal value was 

approximately 0.0013 x 1012 s"1. The agreement between the experimental data and the 
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Figure 5.11. (a) Plot of simulated fluorescence upconversion data obtained from the kinetic 
scheme presented in Fig. 10. The solid line represents the experimental data for hypocrellin B 
in OcOH at an emission wavelength of 591 nm (Fig. 5.9b). The fluorescence lifetime of 
hypocrellin B is rather insensitive to solvent, as in the cases of hypocrellin A and hypericin 
[7-10]. The long dashed line represents the simulated data convoluted with an appropriate 
instrument response function and the short dashed line represents the simulated data with a 
5% Poisson noise added to it. (Poisson noise is added because this is the type of noise 
inherent to the photon counting experiment.) The functional form of the simulated 

. fluorescence upconversion data is given by F(t) ~[DT*](t) = 0.93exp(—1/1070 ps) + 
0.07exp(—1/50 ps), where the prefactors are normalized such that the fluorescence intensity 
is unity at time zero. 

(b) Plot of simulated transient absorption data obtained from the kinetic scheme. 
The solid line represents experimental data for hypocrellin B in MeOH at a probe wavelength 
of 595 nm. The long dashed line represents simulated data convoluted with an appropriate 
instrument response function and the short dashed line represents the simulated data with a 
5% level of Gaussian noise added to it. The functional form of the simulated transient 
absorption data is: AA(t) = (ED* —EO)[DT*](t)l + (EN* —EO)[NT*](t)l, where ED*, ED and EN* 
are the molar extinction coefficients for DT*, DT and NT*, respectively, and 1 is the 
path length of the sample. It is assumed that EN* > ED*, that ED* -ED and that NT is not present 
in the ground state. This equation thus reduces to AA(t) ®=[NT*](t) = 3.4[1 —exp(—1/50 ps)] 
+ 0.1exp(—1/1070 ps). The experimental data are fit to: AA(t) = 0.46[1 —exp(—1/52)] + 
0.30exp(—t/oo). The curves are normalized to unity at 500 ps. 
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simulation is excellent. As noted above, the simplest and most constrained assumption is that 

NT* is nonfluorescent and hence that TF.N- ~°°- Nevertheless, the experimental data are 

qualitatively reproduced even if TF.N- - I ns, i.e. approximately the measured fluorescence 

lifetime of hypocrellin B (Fig. 5.9b). 

Conclusions 

The crucial observation that permitted the unification of the hypocrellin A and 

hypericin photophysics is the observation of a -10 ps transient that lacks a deuterium isotope 

effect, in time-resolved absorption and fluorescence upconversion measurements [16, 21]. 

This component is absent in the hypocrellin B data because in terms of our model, it exists in 

only one ground-state conformer/tautomer that does not correspond to the gauche normal 

form of hypocrellin A that exhibits the -10 ps component (Fig. 5.2. The longer-lived 

transients of hypocrellin B are similar in magnitude and solvent dependence to those of 

hypocrellin A (Figs. 5.7 and 5.8). 

The similarity of these long-lived transients is surprising. Although the double bond 

in the 7-membered ring of hypocrellin B constrains it to exist in one conformational and 

tautomeric form [16], it appears that in the excited state this is not the case. As suggested in 

the introduction, if these double bonds are conjugated with the aromatic system of the 

hypocrellin B skeleton, then optical7t-7t* excitation would result in a relaxation of the 

constraint and would permit the 7-membered ring to execute the type of gauche/anti 

structural changes that we propose occur in hypocrellin A and that are the origin of the strong 

viscosity dependence [17]. 
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The hypocrellin B photophysics are well described by a simple model involving one 

ground-state species and excited-state forward and reverse H-atom transfer with a 

nonfluorescent state. These results suggest that careful fluorescence measurements with high 

signal-to-noise ratio (such as those provided by the time-correlated single photon counting 

technique rather than the fluorescence upconversion technique (Fig. 5.9) may reveal two 

exponentially decaying components for the fluorescence decay of hypocrellin B. If this is the 

case, knowledge of the second, shorter-lived, low-amplitude component, not resolved by our 

fluorescence upconversion measurements, can permit us to estimate knr as defined in terms 

of the kinetic scheme presented in Fig. 5.7. 
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CHAPTER VI: COPLING OF LARGE-AMPLITUDE SIDE CHAIN 

MOTIONS TO THE EXCITED-STATE H-ATOM TRANSFER OF 

PERYLENE QUINONES: APPLICATION OF THEORY AND 

EXPERIMENT TO CALPHOSTIN C 

A paper published in Journal of Physical Chemistry1 

Anindya Datta2. Pradipta Bandyopadhyay2. Jin Wen2. Jacob W. Petrich2'3. and 

Mark S. Gordon2'3 

Abstract 

The excited-state intramolecular H-atom transfer reactions of hypocrellins B and 

A are compared with those of calphostin C. Based on the results of transient absorption 

measurements and ab initio quantum mechanical calculations, it is concluded that large-

amplitude conformational changes are coupled to the H-atom transfer in calphostin C. 

just as they are in hypocrellins A and B. The calculations on this very large molecule 

with a very complex ground electronic state potential energy surface were made possible 

by the use of highly scalable electronic structure theory codes on large parallel 

computers. 

1 Reprinted with permission of/. Phys. Chem. A, 2001. 105. 1057-1060 
2 Department of Chemistry, Iowa State University. Ames. IA 50011-3111 USA 
3 To whom correspondence should be addressed 
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Introduction 

The nearly symmetrical perylene quinones, hypericin, hypocrellins A and B, and 

calphostin C (Figure 6.1). are of interest because of their light-induced biological properties 

[1-5]. We have argued that they also present a fascinating system with which to study 

excited-state intramolecular H-atom transfer [6-20]. 

Hypericin executes an intramolecular excited-state H-atom transfer in -10 ps [20]. 

This reaction is independent of solvent. In this respect, hypericin distinguishes itself from 

the other perylene quinones such as hypocrellins A and B, which both undergo excited-state 

H-atom transfer that is strongly viscosity dependent. Their H-atom transfer times in ethanol 

and octanoi range from 50 to 100 ps (Table 6.1). The origin of this dependence lies in the 

presence of the 7-membered ring in the hypocrellin "bay region." 

Three significantly populated species are observed in the ground state for hypocrellin 

A [ 19]: two "normal." that is untautomerized, species differing in the orientation of the 7-

membered ring (i.e„ a gauche or anti conformation about the C14-C13 bond or the C14-C16 

bond) and a double tautomer in the gauche conformation (Figure 6.2). Conformational 

changes are coupled to both ground- and excited-state tautomerization in hypocrellin A [19]. 

Owing to the double bond in its 7-membered ring, hypocrellin B, has higher structural 

rigidity in the ground state than does hypocrellin A. Consequently, only one 

tautomer/conformer of hypocrellin B is observed by NMR to be significantly populated in 

the ground state [ 19]. On the other hand, insofar as the double bond of hypocrellin B's 7-

membered ring is conjugated 
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Figure 6.1 Structures of hypericin "normal" (a) and double tautomer (b) forms; hypocrellin 
A "normal" (c) and double tautomer (d) forms; hypocrellin B (e) and calphostin C (f). 
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Figure 6.2 Conformational forms of the hypocrellin A normal and double tautomers. The 
anti/gauche nomenclature is based on the relative position of the methyl and acetyl moieties 
as depicted by the Newman projection: gauche double tautomer, gD, 60% of the ground-
state population; anti normal tautomer, aN, 30%; gauche normal tautomer, gN, 10%. 
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Table 6.1: Kinetic Parameters for Hypocrellin A. Hypocrellin B. and Calphostin C at 595nm 
in Ethanol and Octanoi"1 

Probe molecule Solvent a, Ti (ps) a2 t2 (PS) a? T3 (PS) 

Hypocrellin A EtOH 0.23 55 -0.46 1010 0.09 

OcOH 0.02 103 -0.72 1060 0.47 

Hypocrellin B EtOH 0.28 84 0.51 - -

OcOH 0.26 109 0.14 - -

Calphostin C EtOH 0.37 104 0.01 - -

OcOH 0.16 147 0.05 - -

'*The data are fit to the following function: AA(t) = a, [ I-exp(-t/ti)] + a? exp(-t/t2) + a? exp(-
t/oo). where a, is the amplitude of the rising component: and the infinite time constant 
describes a process that does not decay on the experimental time scales (up to 500 ps full 
scale) used in this study. 

to the 7t system of the aromatic skeleton, one might expect that in the excited state the 7-

membered ring is able to undergo a conformational change about the double bond. Thus, we 

suggest that excited-state conformational changes are coupled to the H- atom transfer in 

hypocrellin B just as gauche/anti changes are coupled to the H-atom transfer in hypocrellin A 

[19.20], 

Calphostin C is a perylene quinone isolated from Cladosporiiun cladosporides. It is a 

potent and specific inhibitor of protein kinase C [21]. To our knowledge, ours are the first 

time-resolved measurements obtained for calphostin C. Aside from the biological 

importance of investigating calphostin C, we were motivated by fundamental photophysical 

considerations. We originally hypothesized that if, as we suggest above, the viscosity 

dependent time constants in hypocrellins A and B are a result of conformational changes of 

their 7-membered rings that are coupled to the H-atom transfer, then breaking this 7-

membered ring ought to afford hypericin-like, viscosity independent, time constants of 
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The results presented here indicate that contrary to our expectation, calphostin C. in 

which there is no 7-membered ring, behaves qualitatively very similarly to hypocrellins A 

and B. In order to rationalize this behavior, it is necessary to propose that there is some 

interaction of the bulky side chains in the bay region that retard the H-atom transfer reaction. 

Justification of this proposal is demonstrated by ab initio quantum mechanical calculations. 

Materials and Methods 

Hypocrellin A and B were obtained from Molecular Probes and were used as 

received. Calphostin C was obtained from Sigma and used without further purification. 

Anhydrous HPLC grade solvents (Aldrich) were used as received. Steady-state absorbance 

spectra were obtained on a Perkin Elmer Lambda 18 double-beam UV-Vis spectrophoto­

meter with 1-nm resolution. Steady state fluorescence spectra were obtained on a Spex 

Fluoromax with a 4-nm bandpass and corrected for lamp spectral intensity and detector 

response. Transient absorption measurements were obtained with the apparatus described in 

detail elsewhere [12]. 

* 

For hypocrellin A. the data are fit to the following function: 

AA(t) = a, [l-exp(-t/Ti)] + a2 exp(-t/r2) + a3 exp(-t/<») (6-1) 

For hypocrellin B and calphostin C, however, two exponential components are sufficient to 

describe the data and the following form is used: 

AA(t) = ai [l-exp(-t/Ti)] + a2 exp(-t/~) (6-2) 
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In both cases, a, is the amplitude of the rising component: and the infinite time constant 

describes a process that does not decay on the experimental time scales (up to 500 ps full 

scale) used in this study. 

Geometry optimizations for various possible isomers of calphostin C in its electronic 

ground state were performed using restricted Hartree-Fock (RHF) wave functions with the 3-

21G* basis set. Various starting points for the geometry optimization were tried, including 

"flat" structures in which the side group and the H-atom transfer region are well separated, 

but all searches led to one of the two structures shown in Figure 6.1. Given the complexity of 

the potential energy surface (more than 50 heavy atoms and many low frequency torsional 

modes), it is certainly possible that other local minima exist. Nonetheless, it is likely that the 

structures given here are among the lowest energy isomers. 

Once the optimized geometries were obtained, single point energy calculations were 

performed with the 6-31G(d) basis set, at both stationary points and at selected points along 

the linear least motion (LLM) path connecting the two. All calculations were carried out 

using the electronic structure code GAMESS [22]. 

Results and Discussion 

Steady state absorption and emission spectra of hypocrellins A and B and of 

calphostin C in ethanol are presented in Figure 6.3. Their excited-state H-atom transfer in 

octanoi and ethanol, as monitored by transient absorbance, is illustrated in Figure 6.4 and 

summarized in Table 6.1. As indicated above, calphostin C lacks the 7-membered ring, 

which we have attributed to origin of the viscosity dependence of the H-atom transfer in 

hypocrellins A and B. The crucial feature revealed by the data is that its H-atom transfer 
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Figure 6.3 Absorption ( ) and emission (—) spectra of 
hypocrellin A, hypocrellin B and calphostin C in ethanol. 
The spectra are normalized to the reddest absorption 
maximum. The excitation wavelength for the emision 
spectra is 477 nm. 
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Figure 6.4 Transient absorbance traces of hypocrellin A, 
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wavelength of 595 nm. The global fits to the data are 
presented in Table 6.1. 
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reaction, nevertheless, exhibits a similar viscosity dependence, which we initially expected to 

be absent. 

To rationalize this behavior, we hypothesized that there is some interaction of the 

bulky side chains that retard the H-atom transfer reaction. By means of ab initio 

calculations, we have discovered structures (Figure 6.5) in which the hydroxyl group of the 

phenolic side chain of calphostin C hydrogen bonds to the carbonyl and hydroxyl groups of 

the perylene quinone moiety. We propose that the large amplitude motion required for the 

displacement of this side chain from the carbonyl group is responsible for the slow H-atom 

transfer kinetics of calphostin C. We anticipate that analogs of the fundamental hypocrellin 

unit. 4.9-dihydroxyperylene-3.10-quinone. lacking bulky side chains, will exhibit hypericin-

like l()-ps, viscosity independent time constants for H-atom transfer. 

The two optimized structures both exhibit significant hydrogen bonding. The OH— 

OH distance in structure 1 is 1.995 À, while the OH—0= distance in structure 2 is 1.991 Â. 

The O—O distances are 2.84 and 2.79 À, respectively. At the RHF/6-3 lG(d) level of theory. 

1 is predicted to be about 4 kcal/mol lower in energy than 2, but the two isomers should be 

considered to be approximately equal in energy, given the level of theory used here. The 

upper limit for the H-atom transfer barrier, obtained from the LLM path is about 23 kcal/mol. 

Both correlation corrections and a proper transition state search would be expected to lower 

this estimate. 

In conclusion, the similarity of the viscosity dependence of the excited-state H-atom 

transfer reaction of calphostin C with that of hypocrellins A and B can be explained by the 

interaction of its side chain and carbonyl group. This interaction, in turn, is predicted by the 

results of ab initio quantum mechanical calculations. We note that these are vacuum 
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Structure 1 

Structure 2 

Figure 6.5 Optimized structures for calphostin C. White, black and red 
atoms represent hydrogen, carbon and oxygen respectively. 
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calculations, and consequently they do not take into account any additional complications 

introduced by possible hydrogen bonding interactions of the phenolic side chain with the 

hydrogen bonding solvents used in this investigation. We note, for example, that the gas-

phase dipole moments for structures 1 and 2 in Figure 6.5 are predicted to be 9.8 and 10.6 D. 

respectively. On the basis of a simple eletrostatic model (probably reasonable given the large 

dipoles. polar solvents are therefore expected to stabilize both isomers and to favor structure 

2 relative to structure 1. 
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CHAPTER VII: TOWARDS THE MOLECULAR FLASHLIGHT: 

PREPARATION, PROPERTIES, AND PHOTOPHYSICS 

OF A HYPERICIN-LUCIFERIN TETHERED MOLECULE 
A research note accepted by Photochemistry and Photobiology 
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Abstract 

The synthesis of a molecule containing hypericin and iuciferin moieties joined by a 

tether is reported. The light induced (in vitro) antiviral activity as well as the photophysical 

properties of this new compound are measured and compared to those of the parent 

compounds, hypericin and pseudohypericin. This tethered molecule exhibits excited-state 

behavior that is very similar to that of its parent compounds and antiviral activity that is 

identical, within experimental error, to that of its most closely related parent compound, 

pseudohypericin. The implications for a photodynamic therapy that is independent of 

external light sources are discussed. 
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Introduction 

The light induced biological activity of hypericin (Figure 7.1) and its analogs, in 

particular their antiviral and anti tumor activities, as well as the rich photophysics they 

exhibit are gaining increasing notice and appreciation and have already been the subject of 

several reviews [1-6]. 

The traditional method of exploiting the light-induced activity of photosensitizers is 

to administer the drug to the patient and to illuminate the target area by introducing fiber 

optics [7-9] or to depend on external light sources to penetrate the tissue efficiently enough to 

excite the chromophore [10-12]. The first of these methods is invasive and only effective for 

localized tumors. The latter depends critically on the absorption spectrum of the 

photosensitizer and the spectrum intensity, and penetration efficiency of the external light 

source. 

We have proposed an alternative method of exciting the phototherapeutic properties 

of hypericin, namely, by inducing a chemiluminescent reaction in the patient [13,4], We 

have demonstrated that the chemiluminescence produced by the reaction of luciferin and the 

enzyme luciferase is sufficient to induce the antiviral activity of hypericin in vitro [13]. 

Chemi luminescent activation of hypericin, however, resulted in only a tenfold reduction of 

viral activity under the conditions investigated, whereas illumination by ambient light 

provided by fluorescent bulbs resulted in greater than 10,000-fold reduction of infectious 

virus. It was suggested that a first step in augmenting the activity is to ensure the proximity 

of the light source, luciferin, and the antiviral or antitumor agent, hypericin. Here we report 
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Figure?. 1 Structures of (a) hypericin, (b) pseudohypericin, (c) tethered pseudohypericin -
luciferin molecule. 
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the synthesis of such a tethered pseudo hypericin-luciferin compound (Figure 7.1) and cite 

some of its biological and photophysical properties. In particular, our main concern is to 

verify that the pseudohypericin-luciferin tethered molecule not only exhibits the same 

excited-state photoprocesses as its parent compounds, such as steady-state absorption and 

emission spectra, excited-state singlet kinetics, triplet lifetime, and singlet oxygen yield: but 

also, and most importantly, the same light-induced antiviral activity. In this preliminary 

study, the antiviral activity of the tethered molecule is excited by ambient light. 

Materials and Methods 

Materials: Hypericin was purchased from Molecular Probes (Eugene, OR) and was 

used as received. Pseudohypericin was purchased from Calbiochem (La Jolla, CA) and was 

used as received. Brij 35 was purchased from Aldrich (Milwaukee, WI) and was 

recrystallized from ethanol before use. 

Preparation ofBrij-35 solution: Samples were dissolved in 100 CMC Brij-35 (240 

mg Brij-35 in 10 mL of pH 7.0 buffer) and sonicated for 20-40 min because of their low 

solubility in Brij. The concentration of the solution was - 10"6 M for steady-state and time 

resolved fluorescence lifetime measurements, while that for the transient absorption 

measurements was ~10"5M. Because the tethered molecule has low solubility in Brij-35, 10 

5M-tethered in Brij-35 solution was prepared by adding 40uL of -2 mM tethered molecule in 

DMSO into 1.2 mL Brij-35, amounting to a solution that is 3% by volume in DMSO. 

Doping the solution in this manner does not influence the form of the kinetic traces but 

significantly improves the signal-to-noise. 
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Synthesis of the tethered molecule: To a solution of luciferin (6 mg, 0.0214 mmol) in 

anhydrous methylene chloride (2 mL) at -15 °C was added N-methylmorpholine (5 mg, 

0.049 mmol). The solution was stirred for 5 minutes at this temperature, after which 

benzylchloroformate ( 8 mg, 0.046 mmol) was added to get a bright yellow solution. The 

yellow solution was stirred at -15 °C for 15 minutes before 1-hydroxybenzotriazole (3mg, 

0.022 mmol) was added. The reaction mixture was stirred for an additional 20 minutes before 

pseudohypericin ( 11 mg, 0.0213 mmol) dissolved in DMF( 0.2 mL) was added, resulting in a 

deep red solution. The deep red solution was allowed to warm to room temperature and was 

stirred at room temperature for an additional 12 h. After 12 h the solvent was evaporated and 

the crude mixture was purified by TLC using 5:1 mixture of ethyl acetate and methanol to get 

7 mg of the tethered molecule (Rf in 5:1 ethyl acetate:MeOH is 0.65). The integrity of the 

tethered molecule was regularly ensured by monitoring steady-state optical spectra, NMR 

spectra, fluorescence lifetimes, and TLC. NMR (D6-DMSO) 8.10-8.20 (M, 1 H), 7.78 (s, 1 

H), 7.3-7.55 (m, 4 H), 6.55-6.60 (m, 1 H), 5.20-5.42 (m, 2 H), 4.85-5.0 (m, 2 H), 4.25-4.35 

(m, 1 H), 2.7 (s, 3 H). IR 9KBr) 2957, 2923, 2854, 1584, 1186, 1100. UV 213, 286,327, 

546, 589 nm. 

Singlet oxygen assay: A 1-kHz Nd: YLF (Quantronix) was used to excite samples at 

527nm. The excitation irradiance at samples was 13 mW/cm2. Fluorescence and scattered 

light were blocked by a 1270 ± 40 nm interference filter fastened to a liquid nitrogen cooled 

charge-coupled device (North Coast EO-817L). The excitation beam was chopped at 400 Hz 

and the output of the detector was fed to a lock-in amplifier (Standford Research SR510), 

which provided the signal, S, proportional to the intensity of the singlet oxygen 

luminescence. Unless otherwise indicated, rose bengal in DMSO was used as the standard 
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for the singlet oxygen yield, <t> = 0.162 ( 14). The relative quantum yield and the quantum 

yield of singlet oxygen were calculated as below: 

. nniUnilanl 
g sample [ _ iQ ^^527nm 

<^>re' c:>tandard onsamPlc ^ ^ 
^ 1 -10 527nrn 

0 = <t>re| x0.162 (7-2) 

where the optical density, OD, was measured at the excitation wavelength of 527 nm. The 

OD of compounds was -0.2. The measured <t> values reported in Table 1 represent the 

average of three experiments. 

Flash photolysis: Flash photolysis measurements were performed with a system 

based on a 10 Hz Surelite (Continuum, Santa Clara, CA) Nd:YAG laser with 100 mW of 

532-nm radiation and an Arc lamp (Photon Technology International, Lawrenceville, NJ ). 

Fluorescence and scattered light were blocked by an 8-nm band-pass monochromator at 520 

nm before the photomultiplier. Triplet transient absorbance data were collected by a two 

channel, 100 MHz oscilloscope (Tektronix, TDS 220, Beaverton, OR) and analyzed by Igor 

Pro software (WaveMetrics Inc., Lake Oswego, OR). 

Time-resolved Pump-Probe Absorption Spectroscopy. The apparatus used for 

ultrafast kinetic measurements is described in detail elsewhere [15, 16]. 

Anitviral Assays. The MA-1 isolate of equine infectious anemia virus (ELAV) [17] 

was used for antiviral assays as previously described [13]. Briefly, cell free virus was diluted 

to approximately 105 focus forming units (FPU) in Hanks buffered saline solution, treated 

with a 20-^iM final concentration of tethered molecule, hypericin, pseudohypericin, or 

luciferin and incubated for 30 minutes in light (or dark). The total light exposure was 
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equivalent to 16.3 J/cm2. Serial ten-fold dilutions of treated virus were then inoculated onto 

equine dermal cells (ATCC CCL57) and the titer of infectious virus was quantified by a focal 

immunoassay as described previously [13]. Results are expressed as reduction in infectious 

virus as compared to the DMSO control. 

Results and Discussion 

The photophysical properties of hypericin, pseudohypericin, and the tethered 

molecule are studied in two systems, DMSO and Brij-35 micelles, in order to compare them 

in bulk solvent and in organized media crudely mimicking a cell. Figure 7.2 and figure 7.3 

present the absorption and emission spectra of the three hypericin derivatives considered here 

in DMSO and in Brij-35 micelles. The spectra are in general quite similar, but there are 

some notable differences: the enhanced absorption at -400 nm for pseudohypericin in 

micelles and the lack of fluorescent emission from the luciferin moiety of the tethered 

molecule in micelles. (The latter is the result of the environment on the emission of the 

luciferin (inset to Figure 7.3c). In micelles, the maximum is more intense at -550 nm rather 

than at -440 nm in DMSO. That the 550-signal is significantly attenuated in the tethered 

molecule may partially be attributed to energy transfer to pseudohypericin; although it is not 

clear why energy transfer is not as effective in DMSO.) Figure 7.4 presents a comparison of 

the transient absorption at a probe wavelength of 600 nm, for all the three compounds in both 

DMSO and Brij. The parameter obtained from fitting these data are summarized in Table 

7.3. In both solvents the rise time of stimulated emission that we have attributed to excited-

state intramolecular H-atom transfer is present. The possible biological significance of this 

process is discussed in much detail elsewhere [6, 18-20]. 
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Figure 7.2. Comparison of the absorption (solid lines) and fluorescence emission(dashed 
lines) spectra of (a) hypericin, (b) pseudohypericin and (c) tethered pseudo hypericin -
luciferin molecule in DMSO. The excitation wavelength for (a) and (b) was 500 nm; and for 
(c) it was 290 nm. 
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Figure 7.3 Comparison of the absorption (solid lines) and fluorescence emission (dashed 
lines) spectra of (a) hypericin, (b) pseudohypericin and (c) tethered pseudo hypericin -
luciferin molecule in Brij-35. Excitation wavelength for (a) and (b) was 500 nm and for (c) 
was 290 nm. Inset of panel (c): emission spectra of luciferin in DMSO (—) and in Brij35 (--
-), Xex = 290nm. The concentration of luciferin is the same for both solvents, -4 x 10'5 M. 
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Figure 7.4 Transient absorption traces (AA vs. time) of hypericin (a), hypericin in DMSO (b) 
hypericin in Brij doped with 3% DMSO (by volume), (c) pseudohypericin in DMSO, (d) 
pseudohypericin in Brij, (e) tethered molecule in DMSO and (f) tethered molecule in Brij 
doped with 3% DMSO (by volume). Xpump(for all samples) = 407 nm; probe wavelength for 
all the samples was 600 nm. The fitting parameters are reported in Table7.3. 

Table 7.3: Parameters obtained from the fit of the transient absorption data3. 

sample at Ti(pS) az 

Hypericin in DMSO 0.19 8.2 -1.00 

Hypericin in Brij (3% DMSO) 0.32 8.0 -1.00 

Pseudohypericin in DMSO 0.30 10.3 -1.00 

Pseudohypericin in Brij 0.17 9.6 -1.00 

Tethered molecule in DMSO 0.20 10.3 -1.00 

Tethered molecule in Brij (3% DMSO) 0.30 4.9 -1.00 

a Transient absorption data are fit to the function: AA(t) = a, exp(-t/t|)+a2 exp(-t/Ti). In all 
cases, Tz= 00 since the time scale on which the experiment is performed does not permit the 
determination of this longer-lived component. For all the samples A.pump = 407 nm and Xpr0be 
= 600 nm. 
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Table 7.1: Fluorescence lifetime parameters 

Sample AI Ti (ps) U2 Î2 (ps) AJ TL (PS) 

Hypericin in DMSO(a) 1.0 5600 ± 200 

Pseudo Hypericin in DMSO(a) 1.0 5200 ± 300 

Tethered Molecule in DMSO(a) 1.0 5040 ± 40 

Hypericin in Brij-35(a) 0.92 ± 0.02 6600 ± 100 0.08 ± 0.02 820 ± 50 

Pseudo Hypericin in Brij-35<a) 0.90 ± 0.02 5590 ± 60 0.10 ±0.02 970 ± 40 

Tethered Molecule in Brij-35(J) 0.91 ±0.02 5700 ± 100 0.09 ± 0.02 780 ± 50 

Luciferin in DMSO(b) 0.06 ± 0.02 2690 ± 10 0.59 ± 0.02 210 ± 10 0.36 ± 0.01 75 ± 10 

Luciferin in Brij35(b) 0.23 ± 0.03 4900 ±300 0.18 ±0.01 610 ±80 0.59 ± 0.03 90 ± 5 

(a) The sample was excited at 580nm and the emission was collected after 610 nm through a cut-off filter. Fluorescence lifetimes 
were fit to a sum of up to two exponentially decaying components: F(t) = a, exp(-t/T|) + ai expf-t/n) The absence of values for a? 
and Ti indicates thai the lifetime was adequately described by a single exponential decay. The data were the average of 3 data sets. 
X < 1.2 for all data presented in the table. 
(b) The sample was excited at 290 nm and the emission was collected after 370 nm through a cut-off filter. Fluorescence lifetimes 
were fit to a sum of three exponentials: F(t) = a, exp(-t/T,) + a, exp(-t/T2> + a^ exp(-t/T;). The data were the average of 3 data sets. 
%' < 1.2 for all data presented in the table. 
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The most important result to be obtained from this comparative study, however, is that as 

indicated by the kinetics measured with subpicosecond resolution, the primary photoprocess 

in these three compounds appear to be the same. Table 7.1 compares the behavior of the 

longer lived singlet states of these molecules by comparing their fluorescence lifetimes. It is 

interesting that in going from DMSO to Brij-35, the lifetimes all acquire a shorter-lived 

subnanosecond component that represents about 10% of the fluorescence intensity. The 

shorter component most likely does not arise from quenching interactions from nearby or 

aggregated hypericin chromophores because at the concentrations used there is only 1 

hypericin molecule for every 250 micelles. This behavior is not unprecedented. We have 

observed the generation of shorter lived fluorescence lifetime components in all the hypericin 

complexes we have investigated, whether they be with Brij micelles, human serum albumin, 

myoglobin, or DNA [21]. An important point to resolve is the origin of the nonradiative 

processes that are induced upon binding to larger macromolecules. The lifetimes of the 

hypericin moieties reported in Table 7.1 are obtained using 580-nm, visible, excitation 

instead of bluer or ultraviolet wavelengths in order to avoid stimulating fluorescence either 

from trace impurities that may be contained in the Brij preparation or from the luciferin 

partner of the tethered molecule. (The last two entries of Table 7.1 are control experiments 

demonstrating that luciferin emission does not contribute to the hypericin fluorescence 

lifetimes we quote. The fluorescence lifetime of luciferin is well described by 3 decaying 

components, in agreement with other results [22]. What is interesting is that the weights and 

duration of the lifetime components change significantly on introduction to the micellar 

environment. Excitation of Brij35 only at 290 nm affords no detectable fluorescence.) 
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Table 7.2: Singlet Oxygen Yields and Triplet Lifetimes 

Compound2 solvent <t> ('02) Triplet Lifetime (^is) 

Hypericin DMSO 0.34 ± 0.02 b 73 ± 15 

Hypericin Brij-35 0.72 C 2.15 ±0.05 

Pseudohypericin DMSO 0.44 ± 0.03 b 71 ± 18 

Pseudohypericin Brij-35 0.96 ±0.03' 2.60 ±0.15 

Tethered molecule DMSO 0.36 ± 0.02 b 52 ± 15 

Tethered molecule Brij-35 1.04 ± 0.03 c 3.00 ±0.17 

a Nîolecular oxygen concentrations are determined by atmospheric pressure. Samples were 
not degassed for triplet lifetime measurements. 
b Singlet oxygen yields are taken relative to that of rose bengal in DMSO, <J> = 0.162 ( 14) 
c Hypericin in Brij-35 was used as a standard for singlet oxygen yields: <t> = 0.72; [Brij35] = 
1.25 mM. pH = 7.0 (25). 

Reactive oxygen species are generated through the triplet species of the 

photosensitizing drug. Table 7.2 summarizes both the triplet lifetimes and the quantum 

yields of singlet oxygen. In all cases, the triplet lifetime decreases roughly one hundred fold 

in going from DMSO to micelles, corresponding to an increase in singlet oxygen yield of a 

factor of two to three. In Brij-35, the singlet oxygen yield of pseudohypericin and of the 

tethered molecule is unity, within experimental error. 

Treatment of virus with the tethered molecule resulted in a significant reduction in 

virus infectivity (Figure 7.5). The antiviral activity of the tethered molecule is equivalent to 

that of pseudohypericin, which is to be expected since pseudohypericin is the base molecule 

for the synthesis of the tethered species. However, both pseudohypericin and the tethered 

molecule were about 1000 times less effective than hypericin in reducing virus infectivity. 

The -CH2OH group in the bay region of pseudohypericin (Figure 7.1b), which affords 

pseudohypericin a "handle" for the tethering of luciferin, is absent on hypericin and may 



www.manaraa.com

157 

Hyp Pseudo hyp Tethered Luciferin DMSO 
molecule 

Figure 7.5 Antiviral activity of the tethered molecule and related compounds. Light induced 
antiviral activity of tethered molecule. Virus infectivity was assayed following treatment 
with tethered molecule and related compounds. DMSO and luciferin samples were used as 
negative controls. Results are expressed as the mean logio virus reduction as compared to 
DMSO, with error bars representing the standard error of the mean. Results were analyzed 
by Student's t-test. Treatments with the same letter above the bar are not statistically 
significant from each other. 

contribute to the reduced antiviral activity of pseudohypericin as compared to hypericin. The 

factors contributing to the relative antiviral and antitumor activities of photoactive 

compounds are rather complicated to assess, as indicated in two recent articles dealing with 

cytotoxicity [23, 24]. In particular, a proper comparison of a series of such analogs must 

carefully consider their: 1) association with the target; 2) absorption spectrum; 3) and 

excited-state photochemistry [24]. It has been proposed that this lower activity can be 

attributed to the lower extinction coefficient of pseudohypericin with respect to that of 

hypericin [24]. 

Conclusion 

We have demonstrated the synthesis of pseudohypericin-luciferin tethered molecule, 

which we ultimately intend to be employed as part of our proposed "molecular flashlight" 
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[13]. An important preliminary to any studies employing chemiluminescence or the 

expression of bioluminescent molecules in cellular systems is to ensure that the presence of 

the tethered luciferin moiety does not adversely affect the photoprocesses of its hypericin 

partner, which are known or suggested to be responsible for its biological and medicinal 

activity. That such should be the case is not obvious. For example, it could reasonably be 

argued that the proximity of the luciferin moiety in the tethered molecule might scavenge 

singlet oxygen species. This work has demonstrated that in bulk solvent and in micelles, 

which crudely mimic a cell, the relevant photophysical parameters of the tethered molecule 

are very similar or identical within experimental error those of hypericin and 

pseudohypericin. Finally, we have shown that the tethered molecule maintains the antiviral 

activity of its most closely related parent compound, pseudohypericin. 
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CHAPTER VIII: SUMMARY AND CONCLUSIONS 

This dissertation illustrates diverse laser techniques and their applications in 

photochemical and biophysical studies. Picosecond time-correlated single photon counting 

provides a powerful tool to study the fluorescence lifetime of most molecules and to 

investigate the dynamics of proteins. The ultrafast pulses of the 30Hz transient spectrometer 

allow us to investigate primary photoprocess in picosecond time scale, for example excited-

state H-atom transfer. 

In chapter III, time-resolved fluorescence and absorption measurements are 

performed to compare the photophysics of hypericin and hypocrellin A in complex with 

subcellular components, for example human serum albumin. Energy transfer from the 

tryptophan residue of HSA to hypericin is very efficient and is characterized by a critical 

distance of 94 Â, from which we estimate a time constant for energy transfer of ~3xlO"15 s. 

There is no evidence for energy transfer from tryptophan to hypocrellin. The result is 

consistent with Raman studies that suggest the carbonyl oxygen of hypericin interacts with 

the N|-H of the single tryptophan residue present in HA subdomain of HSA [1]. 

In chapter IV, we have exploited the fluorescence properties of the tryptophan 

chromophore to investigate the structure conformation of porcine fructose-1,6-

bisphosphatase (Trp57FBPase). The sensitivity of tryptophan chromophore to the polarity of 

its environment allows us to elucidate protein dynamics and structure. The results from time-

resolved fluorescence measurement are consistent with the predictions made on the basis of 

X-ray crystal structures of Trp57FBPase. 
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Our previous studies [2-5] provided some evidence for the excited-state H-atom 

transfer in hypericin and hypocrellin. Hypericin was observed to perform an intramolecular 

excited-state H-atom transfer in -lOps [6] and this reaction is independent of solvent. On the 

other hand, the excited H-atom transfer in hypocrellin was observed to be strongly viscosity 

dependent. In chapter V, a comparison of the photophysics of hypocrellin A and B provides a 

base to understand the importance of the 7-membered ring and how its conformation 

influences the excited state H-atom transfer. A simple model is proposed to describe the 

hypocrellin B photophysics. In chapter VI, the results of transient absorption measurements 

and ab initio quantum mechanical calculations on calphostin C gives more evidence that the 

viscosity dependence of the excited state H-atom transfer reaction of calphostin C with that 

of hypocrellins can be explained by the interaction of its side chain and carbonyl group. The 

perylene quinines, hypocrellin, hypericin and their analogs are of interest because of their 

light-induced biological properties, i.e. antiviral and antitumor activity. 

In chapter VII, a new compound, a hypericin-luciferin tethered molecule, is proposed 

as a potential photosensitizer in photodynamic therapy. This new molecule provides an 

alternative method of exciting the phototherapeutic properties of hypericin by inducing a 

chemiluminescent reaction in the patient. This study indicates that the tethered molecule 

exhibits similar excited-state behavior and antiviral activity as its parent compound, 

hypericin. 
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